7825 (number)
7825 (seven thousand, eight hundred [and] twenty-five) is the natural number following 7824 and preceding 7826. Ths number is an odd number
| ||||
---|---|---|---|---|
← 0 [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] [[{{#expr:{{{1}}}*{{{factor}}}*1000}} (number)|{{#ifeq:{{{1}}}|10|→|{{#expr:{{{1}}}*{{{factor}}}}}k}}]] | ||||
Cardinal | seven thousand, eight hundred [and] twenty-five | |||
Ordinal | 7825th | |||
Factorization | 52 × 313 | |||
Greek numeral | ,ΖΩΚΕ´ | |||
Roman numeral | VMMDCCCXXV, or VIIDCCCXXV | |||
Binary | 11110100100012 | |||
Ternary | 1012012113 | |||
Octal | 172218 | |||
Duodecimal | 464112 | |||
Hexadecimal | 1E9116 |
In mathematics
- 7825 is the smallest number when it is impossible to assign two colors to the first few natural numbers such that every Pythagorean triple is multicolored, i.e. where the Boolean Pythagorean triples problem becomes false. The 200-terabyte proof to verify this is the largest ever made.[1][2]
- 7825 is a magic constant of n × n normal magic square and n-Queens Problem for n = 25.
References
- Lamb, Evelyn (2016-06-02). "Two-hundred-terabyte maths proof is largest ever". Nature. 534 (7605): 17–18. Bibcode:2016Natur.534...17L. doi:10.1038/nature.2016.19990. PMID 27251254.
- Heule, Marijn J. H.; Kullmann, Oliver; Marek, Victor W. (2016-01-01). "Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer". Theory and Applications of Satisfiability Testing – SAT 2016. Lecture Notes in Computer Science. 9710. pp. 228–245. arXiv:1605.00723. doi:10.1007/978-3-319-40970-2_15. ISBN 978-3-319-40969-6.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.