AN/SLQ-32 electronic warfare suite
The AN/SLQ-32 is a shipboard electronic warfare suite built by the Raytheon Company of Goleta, California and The Hughes Aircraft Company.[1] It is currently the primary electronic warfare system in use by U.S. Navy ships (as of 2017).
Variants
Referred to by its operators as the "slick-32". The SLQ-32 was originally conceived in the 1970s to augment the AN/WLR-1, which had been in service since the early 1960s. It was later determined to save costs to replace the various WLR-1 series suites with the SLQ-32 as a stand-alone system. As originally designed, the SLQ-32 was produced in three variants, the (V)1, (V)2 and (V)3. Later in its service life, two additional versions were built, the (V)4 and (V)5. The Air Transport Rack sized processors were supplied by ROLM Mil-Spec Computers in San Jose, CA.
- SLQ-32(V)1 – A simple threat warning receiver, it was capable of receiving high-band radar signals of the type commonly carried on missiles and aircraft. The (V)1 was installed on auxiliary ships and small combatants such as frigates. This variant of the system is being phased out as current ships equipped become decommissioned.
- SLQ-32(V)2 – Initially the most common variant, the (V)2 added the ability to receive surveillance and targeting radars. This provided a passive targeting capability for Harpoon missile-equipped ships. The (V)2 was installed on frigates, destroyers, and 270-foot (82 m) Coast Guard Cutters.
- SLQ-32(V)3 – Expanding on the (V)2's capabilities, the (V)3 added active radar-jamming capability. The (V)3 was installed on various combatants such as cruisers, battleships, large amphibious ships and high-value replenishment vessels.
- SLQ-32(V)4 – Designed for installation on aircraft carriers, the (V)4 consisted of two (V)3 systems, one for each side of the ship, tied to a common computer and display conso Additional line replaceable units and software were added to support the wide separation of the two antenna/electronics enclosures.
- SLQ-32(V)5 – The (V)5 was built as a response to the Stark incident in 1987. The (V)5 incorporated a compact version of the (V)3 system intended to give active jamming capability to the Perry class FFG's, which were too small to carry a full (V)3.
All versions of the SLQ-32, with the exception of the (V)4, are interfaced with the MK36 Decoy Launching System, able to launch chaff and infrared decoys under the control of the SLQ-32. The number and arrangement of MK36 launchers installed depends on the size of the ship, ranging from two launchers on a small combatant to as many as ten on an aircraft carrier. A growing number of systems are being upgraded to incorporate the multi-national MK-53 Nulka system.
The original modular design was intended to allow upgrades of the system from one variant to the next by simply installing additional equipment as required. Starting in the early 1990s, a program was begun to upgrade all SLQ-32s in the U.S. fleet. Most (V)1 systems were upgraded to (V)2, and most (V)2 systems were upgraded to (V)3. This was normally carried out during a major ship overhaul.
Contract
The initial procurement process was built around a “design to price” concept in which the final delivery cost per system was fixed in the contract. The SLQ-32 was designed to support the protection of ships against anti-ship missiles in an open sea environment. After initial deployment of the system, naval roles began to change requiring ships to operate much closer to shore in denser signal environments. This change in roles required changes to the SLQ-32 systems which were added over time. With experience gained working with the SLQ-32, coupled with improvements to the hardware and software, technicians and operators gradually overcame the initial problems. The SLQ-32 is now the mainstay of surface electronic warfare in the U.S. Navy and U.S. Coast Guard's WMEC 270-foot (82 m) Class Ships.
Future
In 1996, a program called the Advanced Integrated Electronic Warfare System (AIEWS) was begun to develop a replacement for the SLQ-32. Designated the AN/SLY-2, AIEWS reached the prototype stage by 1999, but funding was withdrawn in April 2002 due to ballooning costs and constant delays in the projects development. It has since been replaced with Surface Electronic Warfare Improvement Program (SEWIP), which will replace the existing SLQ-32 hardware and technology in an evolutionary fashion. As of September 2013 SEWIP Block 2 upgrades were first installed on Burke-class destroyers in 2014, with full-rate production scheduled for mid-2015.[2] Block 2 improved detection capabilities; better jamming is planned from 2017, but the 2013 sequestration cuts may push this date back a year.[3]
SEWIP Block 2 was tested on USS Freedom in December 2014.[4]
See also
- Electronic Warfare
- ELINT
- U.S. Navy
- Raytheon
References
- "SLQ-32(V) – Archived 10/2000". Retrieved 22 April 2018.
- "CNO's Position Report: 2014" (pdf). US Navy. 4 November 2014. Retrieved 2014-11-26.
- Greenert, Admiral Jonathan (18 September 2013). "Statement Before The House Armed Services Committee On Planning For Sequestration In FY 2014 And Perspectives Of The Military Services On The Strategic Choices And Management Review" (pdf). US House of Representatives. Retrieved 21 September 2013.
- "U.S. Navy Evaluates Electronic Warfare Improvement Program for Littoral Combat Ships". www.navyrecognition.com. Navyrecognition.com. 23 November 2014. Retrieved 24 November 2014.