Binder parameter
The Binder parameter or Binder cumulant[1][2] in statistical physics, also known as the fourth-order cumulant is defined as the kurtosis of the order parameter, s introduced by Austrian Theoretical Physicist Kurt Binder. It is frequently used to determine accurately phase transition points in numerical simulations of various models. [3]
The phase transition point is usually identified comparing the behavior of as a function of the temperature for different values of the system size . The transition temperature is the unique point where the different curves cross in the thermodynamic limit. This behavior is based on the fact that in the critical region, , the Binder parameter behaves as , where .
Accordingly, the cumulant may also be used to identify the universality class of the transition by determining the value of the critical exponent of the correlation length. [1]
In the thermodynamic limit, at the critical point, the value of the Binder parameter depends on boundary conditions, the shape of the system, and anisotropy of correlations. [1][4][5][6]
References
- Binder, K. (1981). "Finite size scaling analysis of ising model block distribution functions". Zeitschrift für Physik B: Condensed Matter. 43 (2): 119–140. Bibcode:1981ZPhyB..43..119B. doi:10.1007/bf01293604. ISSN 0340-224X. S2CID 121873477.
- Binder, K. (1981-08-31). "Critical Properties from Monte Carlo Coarse Graining and Renormalization". Physical Review Letters. 47 (9): 693–696. Bibcode:1981PhRvL..47..693B. doi:10.1103/physrevlett.47.693. ISSN 0031-9007.
- K. Binder, D. W. Heermann, Monte Carlo Simulation in Statistical Physics: An Introduction (2010) Springer
- Kamieniarz, G; Blote, H W J (1993-01-21). "Universal ratio of magnetization moments in two-dimensional Ising models". Journal of Physics A: Mathematical and General. 26 (2): 201–212. Bibcode:1993JPhA...26..201K. doi:10.1088/0305-4470/26/2/009. ISSN 0305-4470.
- Chen, X. S.; Dohm, V. (2004-11-30). "Nonuniversal finite-size scaling in anisotropic systems". Physical Review E. 70 (5): 056136. arXiv:cond-mat/0408511. Bibcode:2004PhRvE..70e6136C. doi:10.1103/physreve.70.056136. ISSN 1539-3755. PMID 15600721. S2CID 44785145.
- Selke, W; Shchur, L N (2005-10-19). "Critical Binder cumulant in two-dimensional anisotropic Ising models". Journal of Physics A: Mathematical and General. 38 (44): L739–L744. arXiv:cond-mat/0509369. doi:10.1088/0305-4470/38/44/l03. ISSN 0305-4470. S2CID 14774533.