CSRP2BP

CSRP2 binding protein is a protein that in humans is encoded by the CSRP2BP gene.[5]

KAT14
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesKAT14, ATAC2, CRP2BP, PRO1194, dJ717M23.1, CSRP2BP, lysine acetyltransferase 14
External IDsOMIM: 617501 MGI: 1917264 HomoloGene: 10745 GeneCards: KAT14
Gene location (Human)
Chr.Chromosome 20 (human)[1]
Band20p11.23Start18,138,118 bp[1]
End18,188,387 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

57325

228714

Ensembl

ENSG00000149474

ENSMUSG00000027425

UniProt

Q9H8E8

Q8CID0

RefSeq (mRNA)

NM_020536
NM_177926

NM_001166640
NM_181417

RefSeq (protein)

NP_065397
NP_001371121

NP_001160112
NP_852082

Location (UCSC)Chr 20: 18.14 – 18.19 MbChr 2: 144.37 – 144.41 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

CSRP2 is a protein containing two LIM domains, which are double zinc finger motifs found in proteins of diverse function. CSRP2 and some related proteins are thought to act as protein adapters, bridging two or more proteins to form a larger protein complex. The protein encoded by this gene binds to one of the LIM domains of CSRP2 and contains an acetyltransferase domain. Although the encoded protein has been detected in the cytoplasm, it is predominantly a nuclear protein. Alternatively spliced transcript variants have been described.[5]

Model organisms

Model organisms have been used in the study of CSRP2BP function. A conditional knockout mouse line, called Csrp2bptm1a(KOMP)Wtsi[16][17] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[18][19][20]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[14][21]

Twenty seven tests were carried out on mutant mice and eight significant abnormalities were observed.[14] Fewer than expected homozygous mutant embryos were identified during gestation. Fewer also survived until weaning. Male homozygous mutant's eyelids fail to open, they had abnormal eye size, a decreased susceptibility to bacterial infection and a decreased body length.[14] Female homozygous mutants had a decreased lean body mass. Animals of both sex also had corneal opacity and spinal abnormalities (including scoliosis and fusion of vertebral arches).[14]

References

  1. GRCh38: Ensembl release 89: ENSG00000149474 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000027425 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: CSRP2 binding protein". Retrieved 2011-09-20.
  6. "Neurological assessment data for Csrp2bp". Wellcome Trust Sanger Institute.
  7. "Dysmorphology data for Csrp2bp". Wellcome Trust Sanger Institute.
  8. "DEXA data for Csrp2bp". Wellcome Trust Sanger Institute.
  9. "Radiography data for Csrp2bp". Wellcome Trust Sanger Institute.
  10. "Eye morphology data for Csrp2bp". Wellcome Trust Sanger Institute.
  11. "Clinical chemistry data for Csrp2bp". Wellcome Trust Sanger Institute.
  12. "Salmonella infection data for Csrp2bp". Wellcome Trust Sanger Institute.
  13. "Citrobacter infection data for Csrp2bp". Wellcome Trust Sanger Institute.
  14. Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica. 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  15. Mouse Resources Portal, Wellcome Trust Sanger Institute.
  16. "International Knockout Mouse Consortium". Archived from the original on 2012-05-29. Retrieved 2012-02-18.
  17. "Mouse Genome Informatics".
  18. Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–342. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  19. Dolgin E (2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  20. Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  21. van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism". Genome Biol. 12 (6): 224. doi:10.1186/gb-2011-12-6-224. PMC 3218837. PMID 21722353.

Further reading

Weiskirchen, R.; Gressner, A. M. (2000). "The Cysteine- and Glycine-Rich LIM Domain Protein CRP2 Specifically Interacts with a Novel Human Protein (CRP2BP)". Biochemical and Biophysical Research Communications. 274 (3): 655–663. doi:10.1006/bbrc.2000.3187. PMID 10924333. Wang, Y. -L.; Faiola, F.; Xu, M.; Pan, S.; Martinez, E. (2008). "Human ATAC is a GCN5/PCAF-containing Acetylase Complex with a Novel NC2-like Histone Fold Module That Interacts with the TATA-binding Protein". Journal of Biological Chemistry. 283 (49): 33808–33815. doi:10.1074/jbc.M806936200. PMC 2590711. PMID 18838386. Guelman, S.; Kozuka, K.; Mao, Y.; Pham, V.; Solloway, M. J.; Wang, J.; Wu, J.; Lill, J. R.; Zha, J. (2008). "The Double-Histone-Acetyltransferase Complex ATAC is Essential for Mammalian Development". Molecular and Cellular Biology. 29 (5): 1176–1188. doi:10.1128/MCB.01599-08. PMC 2643826. PMID 19103755. Wang, K.; Zhang, H.; Bloss, C. S.; Duvvuri, V.; Kaye, W.; Schork, N. J.; Berrettini, W.; Hakonarson, H. (2010). "A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa" (PDF). Molecular Psychiatry. 16 (9): 949–959. doi:10.1038/mp.2010.107. PMID 21079607. S2CID 15188506.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.