Catalan's triangle
In combinatorial mathematics, Catalan's triangle is a number triangle whose entries give the number of strings consisting of n X's and k Y's such that no initial segment of the string has more Y's than X's. It is a generalization of the Catalan numbers, and is named after Eugène Charles Catalan. Bailey[1] shows that satisfy the following properties:
- .
- .
- .
Formula 3 shows that the entry in the triangle is obtained recursively by adding numbers to the left and above in the triangle. The earliest appearance of the Catalan triangle along with the recursion formula is in page 214 of the treatise on Calculus published in 1800[2] by Louis François Antoine Arbogast.
Shapiro[3] introduces another triangle which he calls the Catalan triangle that is distinct from the triangle being discussed here.
General formula
The general formula for is given by[1][4]
where n and k are nonnegative integers and n! denotes the factorial. Thus, for k>0, .
The diagonal C(n, n) is the n-th Catalan number. The row sum of the n-th row is the (n + 1)-th Catalan number.
Some values are given by[5]
- kn
0 1 2 3 4 5 6 7 8 0 1 1 1 1 2 1 2 2 3 1 3 5 5 4 1 4 9 14 14 5 1 5 14 28 42 42 6 1 6 20 48 90 132 132 7 1 7 27 75 165 297 429 429 8 1 8 35 110 275 572 1001 1430 1430
Generalization
Catalan's trapezoids are a countable set of number trapezoids which generalize Catalan’s triangle. Catalan's trapezoid of order m = 1, 2, 3, ... is a number trapezoid whose entries give the number of strings consisting of n X-s and k Y-s such that in every initial segment of the string the number of Y-s does not exceed the number of X-s by m or more.[6] By definition, Catalan's trapezoid of order m = 1 is Catalan's triangle, i.e., .
Some values of Catalan's trapezoid of order m = 2 are given by
- kn
0 1 2 3 4 5 6 7 8 0 1 1 1 1 2 2 2 1 3 5 5 3 1 4 9 14 14 4 1 5 14 28 42 42 5 1 6 20 48 90 132 132 6 1 7 27 75 165 297 429 429 7 1 8 35 110 275 572 1001 1430 1430
Some values of Catalan's trapezoid of order m = 3 are given by
- kn
0 1 2 3 4 5 6 7 8 9 0 1 1 1 1 1 2 3 3 2 1 3 6 9 9 3 1 4 10 19 28 28 4 1 5 15 34 62 90 90 5 1 6 21 55 117 207 297 297 6 1 7 28 83 200 407 704 1001 1001 7 1 8 36 119 319 726 1430 2431 3432 3432
Again, each element is the sum of the one above and the one to the left.
A general formula for is given by
( n = 0, 1, 2, ..., k = 0, 1, 2, ..., m = 1, 2, 3, ...).
Proofs of the general formula for
Proof 1
This proof involves extension of the Andres Reflection method as used in the second proof for the Catalan number. The following shows how every path from the bottom left to the top right of the diagram that crosses the constraint can also be reflected to the end point .
We consider three cases to determine the number of paths from to that do not cross the constraint:
(1) when the constraint cannot be crossed, so all paths from to are valid, i.e. .
(2) when it is impossible to form a path that does not cross the constraint, i.e. .
(3) when , then is the number of 'red' paths minus the number of 'yellow' paths that cross the constraint, i.e. .
Thus the number of paths from to that do not cross the constraint is as indicated in the formula in the previous section "Generalization".
Proof 2
Firstly, we confirm the validity of the recurrence relation by breaking down into two parts, the first for XY combinations ending in X and the second for those ending in Y. The first group therefore has valid combinations and the second has . Proof 2 is completed by verifying the solution satisfies the recurrence relation and obeys initial conditions for and .
See also
References
- Bailey, D. F. (1996). "Counting Arrangements of 1's and -1's". Mathematics Magazine. 69 (2): 128–131. doi:10.1080/0025570X.1996.11996408.
- Arbogast, L. F. A. (1800). Du Calcul des Derivations. p. 214.
- Shapiro, L. W. (1976). "A Catalan Triangle". Discrete Mathematics. 14 (1): 83–90. doi:10.1016/0012-365x(76)90009-1.
- Eric W. Weisstein. "Catalan's Triangle". MathWorld − A Wolfram Web Resource. Retrieved March 28, 2012.
- Sloane, N. J. A. (ed.). "Sequence A009766 (Catalan's triangle)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved March 28, 2012.
- Reuveni, Shlomi (2014). "Catalan's trapezoids". Probability in the Engineering and Informational Sciences. 28 (3): 4391–4396. doi:10.1017/S0269964814000047.