Characteristic function

In mathematics, the term "characteristic function" can refer to any of several distinct concepts:

which for a given subset A of X, has value 1 at points of A and 0 at points of X  A.
  • There is an indicator function for affine varieties over a finite field:[1] given a finite set of functions let be their vanishing locus. Then, the function acts as an indicator function for . If then , otherwise, for some , we have , which implies that , hence .
  • The characteristic function in convex analysis, closely related to the indicator function of a set:
where denotes expected value. For multivariate distributions, the product tX is replaced by a scalar product of vectors.

References

  1. Serre. Course in Arithmetic. p. 5.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.