Clairaut's equation

In mathematical analysis, Clairaut's equation (or the Clairaut equation) is a differential equation of the form

where f is continuously differentiable. It is a particular case of the Lagrange differential equation. It is named after the French mathematician Alexis Clairaut, who introduced it in 1734.[1]

Definition

To solve Clairaut's equation, one differentiates with respect to x, yielding

so

Hence, either

or

In the former case, C = dy/dx for some constant C. Substituting this into the Clairaut's equation, one obtains the family of straight line functions given by

the so-called general solution of Clairaut's equation.

The latter case,

defines only one solution y(x), the so-called singular solution, whose graph is the envelope of the graphs of the general solutions. The singular solution is usually represented using parametric notation, as (x(p), y(p)), where p = dy/dx.

Examples

The following curves represent the solutions to two Clairaut's equations:

In each case, the general solutions are depicted in black while the singular solution is in violet.

Extension

By extension, a first-order partial differential equation of the form

is also known as Clairaut's equation.[2]

See also

Notes

References

  • Clairaut, Alexis Claude (1734), "Solution de plusieurs problèmes où il s'agit de trouver des Courbes dont la propriété consiste dans une certaine relation entre leurs branches, exprimée par une Équation donnée.", Histoire de l'Académie royale des sciences: 196–215CS1 maint: ref=harv (link).
  • Kamke, E. (1944), Differentialgleichungen: Lösungen und Lösungsmethoden (in German), 2. Partielle Differentialgleichungen 1er Ordnung für eine gesuchte Funktion, Akad. VerlagsgesellCS1 maint: ref=harv (link).
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.