Cole–Cole equation

The Cole–Cole equation is a relaxation model that is often used to describe dielectric relaxation in polymers.

It is given by the equation

where is the complex dielectric constant, and are the "static" and "infinite frequency" dielectric constants, is the angular frequency and is a time constant.

The exponent parameter , which takes a value between 0 and 1, allows to describe different spectral shapes. When , the Cole-Cole model reduces to the Debye model. When , the relaxation is stretched, i.e. it extends over a wider range on a logarithmic scale than Debye relaxation.

The separation of the complex dielectric constant was reported in the original paper by Cole and Cole[1] as follows:

Upon introduction of hyperbolic functions, the above expressions reduce to:

Here .

These equations reduce to the Debye expression when .

Cole–Cole relaxation constitutes a special case of Havriliak–Negami relaxation when the symmetry parameter (β) is equal to 1, that is, when the relaxation peaks are symmetric. Another special case of Havriliak–Negami relaxation (β<1, α=1) is known as Cole–Davidson relaxation. For an abridged and updated review of anomalous dielectric relaxation in disordered systems, see Kalmykov.

References

  1. Cole, Kenneth S, Robert H (1941). "Dispersion and Absorption in Dielectrics: I - Alternating Current Characteristics". Journal of Chemical Physics. 9 (4): 341–351. Bibcode:1941JChPh...9..341C. doi:10.1063/1.1750906.

Cole, K.S.; Cole, R.H. (1941). "Dispersion and Absorption in Dielectrics - I Alternating Current Characteristics". J. Chem. Phys. 9 (4): 341–352. Bibcode:1941JChPh...9..341C. doi:10.1063/1.1750906.

Cole, K.S.; Cole, R.H. (1942). "Dispersion and Absorption in Dielectrics - II Direct Current Characteristics". Journal of Chemical Physics. 10 (2): 98–105. Bibcode:1942JChPh..10...98C. doi:10.1063/1.1723677.

Kalmykov, Y.P.; Coffey, W.T.; Crothers, D.S.F.; Titov, S.V. (2004). "Microscopic Models for Dielectric Relaxation in Disordered Systems". Physical Review E. 70 (4): 041103. Bibcode:2004PhRvE..70d1103K. doi:10.1103/PhysRevE.70.041103. PMID 15600393.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.