Comparison of deep-learning software
The following table compares notable software frameworks, libraries and computer programs for deep learning.
Deep-learning software by name
Software | Creator | Initial release | Software license[lower-alpha 1] | Open source | Platform | Written in | Interface | OpenMP support | OpenCL support | CUDA support | Automatic differentiation[1] | Has pretrained models | Recurrent nets | Convolutional nets | RBM/DBNs | Parallel execution (multi node) | Actively developed |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BigDL | Jason Dai (Intel) | 2016 | Apache 2.0 | Yes | Apache Spark | Scala | Scala, Python | No | Yes | Yes | Yes | ||||||
Caffe | Berkeley Vision and Learning Center | 2013 | BSD | Yes | Linux, macOS, Windows[2] | C++ | Python, MATLAB, C++ | Yes | Under development[3] | Yes | Yes | Yes[4] | Yes | Yes | No | ? | No[5] |
Chainer | Preferred Networks | 2015 | BSD | Yes | Linux, macOS | Python | Python | No | No | Yes | Yes | Yes | Yes | Yes | No | Yes | No[6] |
Deeplearning4j | Skymind engineering team; Deeplearning4j community; originally Adam Gibson | 2014 | Apache 2.0 | Yes | Linux, macOS, Windows, Android (Cross-platform) | C++, Java | Java, Scala, Clojure, Python (Keras), Kotlin | Yes | No[7] | Yes[8][9] | Computational Graph | Yes[10] | Yes | Yes | Yes | Yes[11] | |
Dlib | Davis King | 2002 | Boost Software License | Yes | Cross-platform | C++ | C++, Python | Yes | No | Yes | Yes | Yes | No | Yes | Yes | Yes | |
Flux | Mike Innes | 2017 | MIT license | Yes | Linux, MacOS, Windows (Cross-platform) | Julia | Julia | Yes | Yes | Yes[12] | Yes | Yes | No | Yes | Yes | ||
Intel Data Analytics Acceleration Library | Intel | 2015 | Apache License 2.0 | Yes | Linux, macOS, Windows on Intel CPU[13] | C++, Python, Java | C++, Python, Java[13] | Yes | No | No | Yes | No | Yes | Yes | |||
Intel Math Kernel Library | Intel | Proprietary | No | Linux, macOS, Windows on Intel CPU[14] | C[15] | Yes[16] | No | No | Yes | No | Yes[17] | Yes[17] | No | ||||
Keras | François Chollet | 2015 | MIT license | Yes | Linux, macOS, Windows | Python | Python, R | Only if using Theano as backend | Can use Theano, Tensorflow or PlaidML as backends | Yes | Yes | Yes[18] | Yes | Yes | No[19] | Yes[20] | Yes |
MATLAB + Deep Learning Toolbox | MathWorks | Proprietary | No | Linux, macOS, Windows | C, C++, Java, MATLAB | MATLAB | No | No | Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder[21] | Yes[22] | Yes[23][24] | Yes[23] | Yes[23] | Yes | With Parallel Computing Toolbox[25] | Yes | |
Microsoft Cognitive Toolkit (CNTK) | Microsoft Research | 2016 | MIT license[26] | Yes | Windows, Linux[27] (macOS via Docker on roadmap) | C++ | Python (Keras), C++, Command line,[28] BrainScript[29] (.NET on roadmap[30]) | Yes[31] | No | Yes | Yes | Yes[32] | Yes[33] | Yes[33] | No[34] | Yes[35] | No[36] |
Apache MXNet | Apache Software Foundation | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[37][38] AWS, Android,[39] iOS, JavaScript[40] | Small C++ core library | C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl, Clojure | Yes | On roadmap[41] | Yes | Yes[42] | Yes[43] | Yes | Yes | Yes | Yes[44] | Yes |
Neural Designer | Artelnics | Proprietary | No | Linux, macOS, Windows | C++ | Graphical user interface | Yes | No | No | ? | ? | No | No | No | ? | ||
OpenNN | Artelnics | 2003 | GNU LGPL | Yes | Cross-platform | C++ | C++ | Yes | No | Yes | ? | ? | No | No | No | ? | |
PlaidML | Vertex.AI, Intel | 2017 | Apache 2.0 | Yes | Linux, macOS, Windows | Python, C++, OpenCL | Python, C++ | ? | Some OpenCL ICDs are not recognized | No | Yes | Yes | Yes | Yes | Yes | Yes | |
PyTorch | Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan (Facebook) | 2016 | BSD | Yes | Linux, macOS, Windows | Python, C, C++, CUDA | Python, C++, Julia | Yes | Via separately maintained package[45][46] | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
Apache SINGA | Apache Software Foundation | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows | C++ | Python, C++, Java | No | Supported in V1.0 | Yes | ? | Yes | Yes | Yes | Yes | Yes | |
TensorFlow | Google Brain | 2015 | Apache 2.0 | Yes | Linux, macOS, Windows,[47][48] Android | C++, Python, CUDA | Python (Keras), C/C++, Java, Go, JavaScript, R,[49] Julia, Swift | No | On roadmap[50] but already with SYCL[51] support | Yes | Yes[52] | Yes[53] | Yes | Yes | Yes | Yes | Yes |
Theano | Université de Montréal | 2007 | BSD | Yes | Cross-platform | Python | Python (Keras) | Yes | Under development[54] | Yes | Yes[55][56] | Through Lasagne's model zoo[57] | Yes | Yes | Yes | Yes[58] | No |
Torch | Ronan Collobert, Koray Kavukcuoglu, Clement Farabet | 2002 | BSD | Yes | Linux, macOS, Windows,[59] Android,[60] iOS | C, Lua | Lua, LuaJIT,[61] C, utility library for C++/OpenCL[62] | Yes | Third party implementations[63][64] | Yes[65][66] | Through Twitter's Autograd[67] | Yes[68] | Yes | Yes | Yes | Yes[59] | No |
Wolfram Mathematica | Wolfram Research | 1988 | Proprietary | No | Windows, macOS, Linux, Cloud computing | C++, Wolfram Language, CUDA | Wolfram Language | Yes | No | Yes | Yes | Yes[69] | Yes | Yes | Yes | Yes[70] | Yes |
Software | Creator | Initial release | Software license[lower-alpha 1] | Open source | Platform | Written in | Interface | OpenMP support | OpenCL support | CUDA support | Automatic differentiation[71] | Has pretrained models | Recurrent nets | Convolutional nets | RBM/DBNs | Parallel execution (multi node) | Actively developed |
- Licenses here are a summary, and are not taken to be complete statements of the licenses. Some libraries may use other libraries internally under different licenses
Comparison of compatibility of machine learning models
Format name | Design goal | Compatible with other formats | Self-contained DNN Model | Pre-processing and Post-processing | Run-time configuration for tuning & calibration | DNN model interconnect | Common platform |
---|---|---|---|---|---|---|---|
TensorFlow, Keras, Caffe, Torch, ONNX, | Algorithm training | No | No / Separate files in most formats | No | No | No | Yes |
ONNX | Algorithm training | Yes | No / Separate files in most formats | No | No | No | Yes |
See also
References
- Atilim Gunes Baydin; Barak A. Pearlmutter; Alexey Andreyevich Radul; Jeffrey Mark Siskind (20 February 2015). "Automatic differentiation in machine learning: a survey". arXiv:1502.05767 [cs.LG].
- "Microsoft/caffe". GitHub.
- "Caffe: a fast open framework for deep learning". July 19, 2019 – via GitHub.
- "Caffe | Model Zoo". caffe.berkeleyvision.org.
- GitHub - BVLC/caffe: Caffe: a fast open framework for deep learning., Berkeley Vision and Learning Center, 2019-09-25, retrieved 2019-09-25
- Preferred Networks Migrates its Deep Learning Research Platform to PyTorch, 2019-12-05, retrieved 2019-12-27
- "Support for Open CL · Issue #27 · deeplearning4j/nd4j". GitHub.
- "N-Dimensional Scientific Computing for Java".
- "Comparing Top Deep Learning Frameworks". Deeplearning4j. Archived from the original on 2017-11-07. Retrieved 2017-10-31.
- Chris Nicholson; Adam Gibson. "Deeplearning4j Models". Archived from the original on 2017-02-11. Retrieved 2016-03-02.
- Deeplearning4j. "Deeplearning4j on Spark". Deeplearning4j. Archived from the original on 2017-07-13. Retrieved 2016-09-01.
- "Metalhead". FluxML.
- "Intel® Data Analytics Acceleration Library (Intel® DAAL)". software.intel.com. November 20, 2018.
- "Intel® Math Kernel Library (Intel® MKL)". software.intel.com. September 11, 2018.
- "Deep Neural Network Functions". software.intel.com. May 24, 2019.
- "Using Intel® MKL with Threaded Applications". software.intel.com. June 1, 2017.
- "Intel® Xeon Phi™ Delivers Competitive Performance For Deep Learning—And Getting Better Fast". software.intel.com. March 21, 2019.
- "Applications - Keras Documentation". keras.io.
- "Is there RBM in Keras? · Issue #461 · keras-team/keras". GitHub.
- "Does Keras support using multiple GPUs? · Issue #2436 · keras-team/keras". GitHub.
- "GPU Coder - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017.
- "Automatic Differentiation Background - MATLAB & Simulink". MathWorks. September 3, 2019. Retrieved November 19, 2019.
- "Neural Network Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017.
- "Deep Learning Models - MATLAB & Simulink". MathWorks. Retrieved 13 November 2017.
- "Parallel Computing Toolbox - MATLAB". MathWorks. Retrieved 13 November 2017.
- "CNTK/LICENSE.md at master · Microsoft/CNTK · GitHub". GitHub.
- "Setup CNTK on your machine". GitHub.
- "CNTK usage overview". GitHub.
- "BrainScript Network Builder". GitHub.
- ".NET Support · Issue #960 · Microsoft/CNTK". GitHub.
- "How to train a model using multiple machines? · Issue #59 · Microsoft/CNTK". GitHub.
- "Prebuilt models for image classification · Issue #140 · microsoft/CNTK". GitHub.
- "CNTK - Computational Network Toolkit". Microsoft Corporation.
- url=https://github.com/Microsoft/CNTK/issues/534
- "Multiple GPUs and machines". Microsoft Corporation.
- "Disclaimer". CNTK TEAM.
- "Releases · dmlc/mxnet". Github.
- "Installation Guide — mxnet documentation". Readthdocs.
- "MXNet Smart Device". ReadTheDocs. Archived from the original on 2016-09-21. Retrieved 2016-05-19.
- "MXNet.js". Github.
- "Support for other Device Types, OpenCL AMD GPU · Issue #621 · dmlc/mxnet". GitHub.
- "— Redirecting to mxnet.io". mxnet.readthedocs.io.
- "Model Gallery". GitHub.
- "Run MXNet on Multiple CPU/GPUs with Data Parallel". GitHub.
- "OpenCL build of pytorch: (in-progress, not useable) - hughperkins/pytorch-coriander". July 14, 2019 – via GitHub.
- "OpenCL Support · Issue #488 · pytorch/pytorch". GitHub.
- "Install TensorFlow with pip".
- "TensorFlow 0.12 adds support for Windows".
- interface), JJ Allaire (R; RStudio; Eddelbuettel, Dirk; Golding, Nick; Tang, Yuan; Tutorials), Google Inc (Examples and (2017-05-26), tensorflow: R Interface to TensorFlow, retrieved 2017-06-14
- "tensorflow/roadmap.md at master · tensorflow/tensorflow · GitHub". GitHub. January 23, 2017. Retrieved May 21, 2017.
- "OpenCL support · Issue #22 · tensorflow/tensorflow". GitHub.
- "TensorFlow". TensorFlow.
- "Models and examples built with TensorFlow". July 19, 2019 – via GitHub.
- "Using the GPU — Theano 0.8.2 documentation".
- "gradient – Symbolic Differentiation — Theano 1.0.0 documentation". deeplearning.net.
- https://groups.google.com/d/msg/theano-users/mln5g2IuBSU/gespG36Lf_QJ
- "Recipes/modelzoo at master · Lasagne/Recipes · GitHub". GitHub.
- "Using multiple GPUs — Theano 1.0.0 documentation". deeplearning.net.
- "torch/torch7". July 18, 2019 – via GitHub.
- "GitHub - soumith/torch-android: Torch-7 for Android". GitHub.
- "Torch7: A Matlab-like Environment for Machine Learning" (PDF).
- "GitHub - jonathantompson/jtorch: An OpenCL Torch Utility Library". GitHub.
- "Cheatsheet". GitHub.
- "cltorch". GitHub.
- "Torch CUDA backend". GitHub.
- "Torch CUDA backend for nn". GitHub.
- "Autograd automatically differentiates native Torch code: twitter/torch-autograd". July 9, 2019 – via GitHub.
- "ModelZoo". GitHub.
- "Wolfram Neural Net Repository of Neural Network Models". resources.wolframcloud.com.
- "Parallel Computing—Wolfram Language Documentation". reference.wolfram.com.
- Atilim Gunes Baydin; Barak A. Pearlmutter; Alexey Andreyevich Radul; Jeffrey Mark Siskind (20 February 2015). "Automatic differentiation in machine learning: a survey". arXiv:1502.05767 [cs.LG].
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.