Conway group Co3

In the area of modern algebra known as group theory, the Conway group is a sporadic simple group of order

   210 · 37 · 53 · 7 · 11 · 23
= 495766656000
≈ 5×1011.

History and properties

is one of the 26 sporadic groups and was discovered by John Horton Conway (1968, 1969) as the group of automorphisms of the Leech lattice fixing a lattice vector of type 3, thus length 6. It is thus a subgroup of . It is isomorphic to a subgroup of . The direct product is maximal in .

The Schur multiplier and the outer automorphism group are both trivial.

Representations

Co3 acts on the unique 23-dimensional even lattice of determinant 4 with no roots, given by the orthogonal complement of a norm 4 vector of the Leech lattice. This gives 23-dimensional representations over any field; over fields of characteristic 2 or 3 this can be reduced to a 22-dimensional faithful representation.

Co3 has a doubly transitive permutation representation on 276 points.

(txt) showed that if a finite group has an absolutely irreducible faithful rational representation of dimension 23 and has no subgroups of index 23 or 24 then it is contained in either or .

Maximal subgroups

Some maximal subgroups fix or reflect 2-dimensional sublattices of the Leech lattice. It is usual to define these planes by h-k-l triangles: triangles including the origin as a vertex, with edges (differences of vertices) being vectors of types h, k, and l.

Larry Finkelstein (1973) found the 14 conjugacy classes of maximal subgroups of as follows:

  • McL:2 – McL fixes a 2-2-3 triangle. The maximal subgroup also includes reflections of the triangle. has a doubly transitive permutation representation on 276 type 2-2-3 triangles having as an edge a type 3 vector fixed by .
  • HS – fixes a 2-3-3 triangle.
  • U4(3).22
  • M23 – fixes a 2-3-4 triangle.
  • 35:(2 × M11) - fixes or reflects a 3-3-3 triangle.
  • 2.Sp6(2) – centralizer of involution class 2A (trace 8), which moves 240 of the 276 type 2-2-3 triangles
  • U3(5):S3
  • 31+4:4S6
  • 24.A8
  • PSL(3,4):(2 × S3)
  • 2 × M12 – centralizer of involution class 2B (trace 0), which moves 264 of the 276 type 2-2-3 triangles
  • [210.33]
  • S3 × PSL(2,8):3 - normalizer of 3-subgroup generated by class 3C (trace 0) element
  • A4 × S5

Conjugacy classes

Traces of matrices in a standard 24-dimensional representation of Co3 are shown.[1] The names of conjugacy classes are taken from the Atlas of Finite Group Representations.[2] [3] The cycle structures listed act on the 276 2-2-3 triangles that share the fixed type 3 side.[4]

ClassOrder of centralizerSize of classTraceCycle type
1Aall Co3124
2A2,903,04033·52·11·238136,2120
2B190,08023·34·52·7·230112,2132
3A349,92025·52·7·11·23-316,390
3B29,16027·3·52·7·11·236115,387
3C4,53627·33·53·11·230392
4A23,0402·35·52·7·11·23-4116,210,460
4B1,5362·36·53·7·11·23418,214,460
5A150028·36·7·11·23-11,555
5B30028·36·5·7·11·23416,554
6A4,32025·34·52·7·11·23516,310,640
6B1,29626·33·53·7·11·23-123,312,639
6C21627·34·53·7·11·23213,26,311,638
6D10828·34·53·7·11·23013,26,33,642
6E7227·35·53·7·11·23034,644
7A4229·36·53·11·23313,739
8A19224·36·53·7·11·23212,23,47,830
8B19224·36·53·7·11·23-216,2,47,830
8C3225·37·53·7·11·23212,23,47,830
9A16229·33·53·7·11·23032,930
9B81210·33·53·7·11·23313,3,930
10A6028·36·52·7·11·2331,57,1024
10B2028·37·52·7·11·23012,22,52,1026
11A2229·37·53·7·2321,1125power equivalent
11B2229·37·53·7·2321,1125
12A14426·35·53·7·11·23-114,2,34,63,1220
12B4826·36·53·7·11·23112,22,32,64,1220
12C3628·35·53·7·11·2321,2,35,43,63,1219
14A1429·37·53·11·2311,2,751417
15A15210·36·52·7·11·2321,5,1518
15B3029·36·52·7·11·23132,53,1517
18A1829·35·53·7·11·2326,94,1813
20A2028·37·52·7·11·2311,53,102,2012power equivalent
20B2028·37·52·7·11·2311,53,102,2012
21A21210·36·53·11·2303,2113
22A2229·37·53·7·2301,11,2212power equivalent
22B2229·37·53·7·2301,11,2212
23A23210·37·53·7·1112312power equivalent
23B23210·37·53·7·1112312
24A2427·36·53·7·11·23-1124,6,1222410
24B2427·36·53·7·11·2312,32,4,122,2410
30A3029·36·52·7·11·2301,5,152,308

Generalized Monstrous Moonshine

In analogy to monstrous moonshine for the monster M, for Co3, the relevant McKay-Thompson series is where one can set the constant term a(0) = 24 (OEIS: A097340),

and η(τ) is the Dedekind eta function.

References

  • Conway, John Horton (1968), "A perfect group of order 8,315,553,613,086,720,000 and the sporadic simple groups", Proceedings of the National Academy of Sciences of the United States of America, 61 (2): 398–400, doi:10.1073/pnas.61.2.398, MR 0237634, PMC 225171, PMID 16591697
  • Conway, John Horton (1969), "A group of order 8,315,553,613,086,720,000", The Bulletin of the London Mathematical Society, 1: 79–88, doi:10.1112/blms/1.1.79, ISSN 0024-6093, MR 0248216
  • Conway, John Horton (1971), "Three lectures on exceptional groups", in Powell, M. B.; Higman, Graham (eds.), Finite simple groups, Proceedings of an Instructional Conference organized by the London Mathematical Society (a NATO Advanced Study Institute), Oxford, September 1969., Boston, MA: Academic Press, pp. 215–247, ISBN 978-0-12-563850-0, MR 0338152 Reprinted in Conway & Sloane (1999, 267–298)
  • Conway, John Horton; Sloane, Neil J. A. (1999), Sphere Packings, Lattices and Groups, Grundlehren der Mathematischen Wissenschaften, 290 (3rd ed.), Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4757-2016-7, ISBN 978-0-387-98585-5, MR 0920369
  • Feit, Walter (1974), "On integral representations of finite groups", Proceedings of the London Mathematical Society, Third Series, 29: 633–683, doi:10.1112/plms/s3-29.4.633, ISSN 0024-6115, MR 0374248
  • Finkelstein, Larry (1973), "The maximal subgroups of Conway's group C₃ and McLaughlin's group", Journal of Algebra, 25: 58–89, doi:10.1016/0021-8693(73)90075-6, ISSN 0021-8693, MR 0346046
  • Thompson, Thomas M. (1983), From error-correcting codes through sphere packings to simple groups, Carus Mathematical Monographs, 21, Mathematical Association of America, ISBN 978-0-88385-023-7, MR 0749038
  • Conway, John Horton; Parker, Richard A.; Norton, Simon P.; Curtis, R. T.; Wilson, Robert A. (1985), Atlas of finite groups, Oxford University Press, ISBN 978-0-19-853199-9, MR 0827219
  • Griess, Robert L. Jr. (1998), Twelve sporadic groups, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-662-03516-0, ISBN 978-3-540-62778-4, MR 1707296
  • Wilson, Robert A. (2009), The finite simple groups., Graduate Texts in Mathematics 251, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-84800-988-2, ISBN 978-1-84800-987-5, Zbl 1203.20012
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.