Diamidophosphate

Diamidophosphate (DAP) is the simplest phosphorodiamidate ion, with formula PO2(NH2)2. It is a phosphorylating ion and was first used for phosphorylation of sugars in aqueous medium.[1] DAP has attracted interest in the area of primordial chemistry.[2]

Diamidophosphate
Names
IUPAC name
diaminophosphinate
Identifiers
3D model (JSmol)
ChemSpider
Properties
H4N2O2P
Molar mass 95.018 g·mol−1
Related compounds
Other anions
Thiophosphordiamidic acid
Other cations
Phosphordiamidic acid
Related
phosphorotriamide
phosphoramidic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Salts

Several salts of the formula MPO2(NH2)2(H2O)x are known.[3]

  • The sodium salt can be made by base hydrolysis of phenyl phosphorodiamidate.[4] It crystallises as a hexahydrate. It can be dehydrated.
  • The silver salt AgPO2(NH2)2 can react using double decomposition with bromides forming other salts.
  • The potassium diamidophosphate salt KPO2(NH2)2 is also known.
  • Phosphorodiamidic acid crystallizes as a trihydrate.[4]

Reactions

Heating anhydrous sodium diamidophosphate causes polmerization:[3]

  • At 160 °C, Na2P2O4(NH)(NH2)2, Na3P3O6(NH)2(NH2)2, Na4P4O8(NH)3(NH2)2, Na5P5O10(NH)4(NH2)2 and Na6P6O12(NH)5(NH2)2 are produced. These substances contain P-N-P backbones. These can be separated by paper chromatography.
  • At 200 °C the hexa-phosphate is produced.
  • At 250°C the typical chain length is 18.

Heating hydrated salts induces loss of ammonia to form oligophosphates and polyphosphates.[3]

Diamidophosphate inhibits urease enzymes by blocking up the active site, binding to two nickel centers. Diamidophosphate mimics the urea hydrolysis intermediate.[5]

Diamidophosphate is tribasic, and the amine groups may also lose hydrogen to form more metallic salts. With silver, further reactions can yield explosive salts: tetrasilver orthodiamidophosphate (AgO)3P(NH2)NHAg, and pentasilver orthodiamidophosphate (AgO)3P(NHAg)2.[6]

Organic esters and amides

Phenyl phosphorodiamidate, an inhibitor of urease, is a controlled release fertilizers.[7]

Numerous organic derivatives are known. One example is phenyl phosphorodiamidate.[8]

Reactions with nucleosides

DAP phosphorylates deoxynucleosides (the building blocks of DNA, and at the same time initiates polymerization to make DNA.[9] DAP facilitates the synthesis of larger RNA sequences (ribozymes) from smaller RNA strands.[10] Other nitrogenous derivatives of phosphorus derivatives have also been proposed in this context in a review article.[11]

References

  1. Krishnamurthy, Ramanarayanan; Guntha, Sreenivasulu; Eschenmoser, Albert (4 July 2000). "Regioselective α-Phosphorylation of Aldoses in Aqueous Solution". Angewandte Chemie International Edition. 39 (13): 2281–2285. doi:10.1002/1521-3773(20000703)39:13<2281::AID-ANIE2281>3.0.CO;2-2. ISSN 1521-3773. PMID 10941064.
  2. "Phosphorylation, Oligomerization and Self-assembly in Water Under Potential Prebiotic Conditions", Gibard et al, Nature Chemistry (2017) doi:10.1038/nchem.2878, published online 06 November 2017
  3. Klement, R.; Biberacher, G. (May 1956). "Das thermische Verhalten von Natriumdiamidophosphat, Darstellung von kondensierten Imidophosphaten". Zeitschrift für Anorganische und Allgemeine Chemie. 285 (1–2): 74–85. doi:10.1002/zaac.19562850109.
  4. Coggins, Adam J.; Powner, Matthew W. (10 October 2016). "Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis Supplementary Information Compound 8" (PDF). Nature Chemistry. 9 (4): 310–317. Bibcode:2017NatCh...9..310C. doi:10.1038/nchem.2624. ISSN 1755-4349. PMID 28338685. S2CID 205296677.
  5. Deborah Zamble; Rowińska-Żyrek, Magdalena; Kozlowski, Henryk (2017). The Biological Chemistry of Nickel. Royal Society of Chemistry. pp. 73–74, 83. ISBN 9781788010580.
  6. Bretherick, L. (2016). Bretherick's Handbook of Reactive Chemical Hazards. Elsevier. p. 19. ISBN 9781483162508.
  7. Pan, Baobao; Lam, Shu Kee; Mosier, Arvin; Luo, Yiqi; Chen, Deli (2016). "Ammonia Volatilization from Synthetic Fertilizers and its Mitigation Strategies: A Global Synthesis". Agriculture, Ecosystems & Environment. 232: 283–289. doi:10.1016/j.agee.2016.08.019.
  8. Kiss, S.; Simihaian, M. (2013). Improving Efficiency of Urea Fertilizers by Inhibition of Soil Urease Activity. Springer Science & Business Media. pp. 105–108. ISBN 9789401718431.
  9. Krishnamurthy, Ramanarayanan; Jiménez, Eddy I.; Gibard, Clémentine (2020). "Prebiotic Phosphorylation and Concomitant Oligomerization of Deoxynucleosides to form DNA". Angewandte Chemie International Edition. n/a (n/a). doi:10.1002/anie.202015910. ISSN 1521-3773. PMID 33325148.
  10. Song, Emilie Yeonwha; Jiménez, Eddy Ivanhoe; Lin, Huacan; Vay, Kristian Le; Krishnamurthy, Ramanarayanan; Mutschler, Hannes (2020). "Prebiotically Plausible RNA Activation Compatible with Ribozyme-Catalyzed Ligation". Angewandte Chemie International Edition. n/a (n/a). doi:10.1002/anie.202010918. ISSN 1521-3773. PMID 33128282.
  11. Karki, Megha; Gibard, Clémentine; Bhowmik, Subhendu; Krishnamurthy, Ramanarayanan (2017-07-29). "Nitrogenous Derivatives of Phosphorus and the Origins of Life: Plausible Prebiotic Phosphorylating Agents in Water". Life. 7 (3): 32. Bibcode:2017Life....7...32K. doi:10.3390/life7030032. PMC 5617957. PMID 28758921.

See also

Other reading

  • H. N. Stokes (1894). "On Diamidoorthophosphoric and Diamidotrihydroxyphosphoric Acids". American Chemical Journal. 16 (2): 123.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.