Ernst Kötter

Ernst Kötter was a German mathematician who graduated in 1884 from Berlin University. His treatise "Fundamentals of a purely geometrical theory of algebraic plane curves" gained the 1886 prize of the Berlin Royal Academy.[2] In 1901, he published his report on "The development of synthetic geometry from Monge to Staudt (1847)";[3] it had been sent to the press as early as 1897, but completion was deferred by Kötter's appointment to Aachen University and a subsequent persisting illness.[4] He constructed a mobile wood model to illustrate the theorems of Dandelin spheres.[5][6]

Ernst Kötter
Born(1859-08-07)7 August 1859
Died26 January 1922(1922-01-26) (aged 62)[1]
Alma materBerlin University
AwardsPrice of the Berlin Royal Academy, 1886
Scientific career
FieldsMathematician
ThesisZur Theorie der Osculationen bei ebenen Curven 3. Ordnung (1884)
Academic advisorsWeierstraß, Kronecker

In a discussion with Schoenflies and Kötter, Hilbert reportedly uttered his famous quotation according to which points, lines, and planes in geometry could be named as well "tables, chairs, and beer mugs".[7]

Publications

  • Ernst Kötter (Jun 1884). Beiträge zur Theorie der Osculationen bei ebenen Curven dritter Ordnung (Ph.D.). Friedrich-Wilhelms-Universität Berlin.
  • Ernst Kötter (1887). "Grundzüge einer rein geometrischen Theorie der algebraischen ebenen Kurven". Transactions of the Royal Academy of Berlin.
  • Ernst Kötter (Oct 1888). "Die Hesse'sche Curve in rein geometrischer Behandlung". Mathematische Annalen. 34: 123–149. doi:10.1007/bf01446793. Archived from the original on 2016-03-04. Retrieved 2019-08-10.
  • Ernst Kötter (1891). "Einige Hauptsätze aus der Lehre von den Curven dritter Ordnung". Mathematische Annalen. 38: 287–297. doi:10.1007/bf01199255.
  • Ernst Kötter (1892). "Ueber diejenigen Polyeder, die bei gegebener Gattung und gegebenem Volumen die kleinste Oberfläche besitzen. Erste Abhandlung". Journal für die reine und angewandte Mathematik. 110: 198–229.
  • Ernst Kötter (1900). "Construction der Oberfläche zweiter Ordnung, welche neun gegebene Punkte enthält". Jahresbericht der Deutschen Mathematiker-Vereinigung: 99–102.

References

  1. German National Library: Record Xml
  2. Norman Fraser (Feb 1888). "Kötter's synthetic geometry of algebraic curves". Proceedings of the Edinburgh Mathematical Society. 7: 46–61. doi:10.1017/s0013091500030364. Here: p.46
  3. Ernst Kötter (1901). Die Entwickelung der Synthetischen Geometrie von Monge bis auf Staudt (1847). Archived from the original on 2016-03-04. Retrieved 2019-08-10. (2012 Reprint as ISBN 1275932649)
  4. Kötter (1901), Preface, p.VIII
  5. "Vermischtes (Miscellany)". Jahresbericht der Deutschen Mathematiker-Vereinigung. 16: 82. 1907.
  6. Illustration of Groningen University
  7. Otto Blumenthal (1935). David Hilbert (ed.). Lebensgeschichte. Gesammelte Abhandlungen. 3. Julius Springer. pp. 388–429. Archived from the original on 2016-03-04. Retrieved 2019-08-10. Here: p.402-403


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.