Faithfully flat descent
Faithfully flat descent is a technique from algebraic geometry, allowing one to draw conclusions about objects on the target of a faithfully flat morphism. Such morphisms, that are flat and surjective, are common, one example coming from an open cover.
In practice, from an affine point of view, this technique allows one to prove some statement about a ring or scheme after faithfully flat base change.
"Vanilla" faithfully flat descent is generally false; instead, faithfully flat descent is valid under some finiteness conditions (e.g., quasi-compact or locally of finite presentation).
A faithfully flat descent is a special case of Beck's monadicity theorem.[1]
Basic form
Let be a faithfully flat ring homomorphism. Given an -module , we get the -module and because is faithfully flat, we have the inclusion . Moreover, we have the isomorphism of -modules that is induced by the isomorphism and that satisfies the cocycle condition:
where are given as:[2]
with . Note the isomorphisms are determined only by and do not involve
Now, the most basic form of faithfully flat descent says that the above construction can be reversed; i.e., given a -module and a -module isomorphism such that , an invariant submodule:
is such that .[3]
Zariski descent
The Zariski descent refers simply to the fact that a quasi-coherent sheaf can be obtained by gluing those on a (Zariski-)open cover. It is a special case of a faithfully flat descent but is frequently used to reduce the descent problem to the affine case.
In details, let denote the category of quasi-coherent sheaves on a scheme X. Then Zariski descent states that, given quasi-coherent sheaves on open subsets with and isomorphisms such that (1) and (2) on , then exists a unique quasi-coherent sheaf on X such that in a compatible way (i.e., restricts to ).[4]
In a fancy language, the Zariski descent states that, with respect to the Zariski topology, is a stack; i.e., a category equipped with the functor the category of (relative) schemes that has an effective descent theory. Here, let denote the category consisting of pairs consisting of a (Zariski)-open subset U and a quasi-coherent sheaf on it and the forgetful functor .
Descent for quasi-coherent sheaves
There is a succinct statement for the major result in this area: (the prestack of quasi-coherent sheaves over a scheme S means that, for any S-scheme X, each X-point of the prestack is a quasi-coherent sheaf on X.)
Theorem — The prestack of quasi-coherent sheaves over a base scheme S is a stack with respect to the fpqc topology.[5]
The proof uses Zariski descent and the faithfully flat descent in the affine case.
Here "quasi-compact" cannot be eliminated; see https://mathoverflow.net/questions/127362/counter-example-to-faithfully-flat-descent/
See also
Notes
- Deligne, Pierre (1990), Catégories Tannakiennes, Grothendieck Festschrift, vol. II, Progress in Math., 87, Birkhäuser, pp. 111–195
- Waterhouse 1979, § 17.1.
- Waterhouse 1979, § 17.2.
- Hartshorne, Ch. II, Exercise 1.22. ; NB: since "quasi-coherent" is a local property, gluing quasi-coherent sheaves results in a quasi-coherent one.
- Fantechi, Barbara (2005). Fundamental Algebraic Geometry: Grothendieck's FGA Explained. American Mathematical Soc. p. 82. ISBN 9780821842454. Retrieved 3 March 2018.
References
- SGA 1, Ch VIII – this is the main reference
- Hartshorne, Robin (1977), Algebraic Geometry, Graduate Texts in Mathematics, 52, New York: Springer-Verlag, ISBN 978-0-387-90244-9, MR 0463157
- Street, Ross (20 Mar 2003). "Categorical and combinatorial aspects of descent theory". arXiv:math/0303175. (a detailed discussion of a 2-category)
- Angelo Vistoli, Notes on Grothendieck topologies, fibered categories and descent theory (Updated September 2, 2008)
- Waterhouse, William (1979), Introduction to affine group schemes, Graduate Texts in Mathematics, 66, Berlin, New York: Springer-Verlag, doi:10.1007/978-1-4612-6217-6, ISBN 978-0-387-90421-4, MR 0547117