Fatou's theorem

In complex analysis, Fatou's theorem, named after Pierre Fatou, is a statement concerning holomorphic functions on the unit disk and their pointwise extension to the boundary of the disk.

Motivation and statement of theorem

If we have a holomorphic function defined on the open unit disk , it is reasonable to ask under what conditions we can extend this function to the boundary of the unit disk. To do this, we can look at what the function looks like on each circle inside the disk centered at 0, each with some radius . This defines a new function:

where

is the unit circle. Then it would be expected that the values of the extension of onto the circle should be the limit of these functions, and so the question reduces to determining when converges, and in what sense, as , and how well defined is this limit. In particular, if the norms of these are well behaved, we have an answer:

Theorem. Let be a holomorphic function such that
where are defined as above. Then converges to some function pointwise almost everywhere and in norm. That is,

Now, notice that this pointwise limit is a radial limit. That is, the limit being taken is along a straight line from the center of the disk to the boundary of the circle, and the statement above hence says that

The natural question is, with this boundary function defined, will we converge pointwise to this function by taking a limit in any other way? That is, suppose instead of following a straight line to the boundary, we follow an arbitrary curve converging to some point on the boundary. Will converge to ? (Note that the above theorem is just the special case of ). It turns out that the curve needs to be non-tangential, meaning that the curve does not approach its target on the boundary in a way that makes it tangent to the boundary of the circle. In other words, the range of must be contained in a wedge emanating from the limit point. We summarize as follows:

Definition. Let be a continuous path such that . Define

That is, is the wedge inside the disk with angle whose axis passes between and zero. We say that converges non-tangentially to , or that it is a non-tangential limit, if there exists such that is contained in and .

Fatou's Theorem. Let Then for almost all
for every non-tangential limit converging to where is defined as above.

Discussion

See also

References

  • John B. Garnett, Bounded Analytic Functions, (2006) Springer-Verlag, New York
  • Walter Rudin. Real and Complex Analysis (1987), 3rd Ed., McGraw Hill, New York.
  • Elias Stein, Singular integrals and differentiability properties of functions (1970), Princeton University Press, Princeton.
  • Weisstein, Eric W. "Fatou's Theorems". mathworld.wolfram.com.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.