Galilean non-invariance of classical electromagnetism
Had Galilean transformation holds for not only mechanics but also electromagnetism, Newtonian relativity would hold for the whole of the physics. However, we know from Maxwell's equation that , which is the velocity of the propagation of electromagnetic waves in vacuum.[1] Hence, it is important to check if Maxwell's equation is invariant under Galilean relativity. For this, we have to find the difference (if any), in the observed force of charge when it is moving at a certain velocity and observed by two reference frames and in such a way that the velocity of is more than (which is at absolute rest).[2]
Electric and magnetic field under Galilean relativity
In order to check whether Maxwell's equation is invariant under Galilean transformation, we have to check how the electric and magnetic field transforms under Galilean transformation.Let a charged particle/s or body is moving at a velocity with respect to S frame.
So, we know that in frame and in frame from Lorentz Force.
Now, we assume that Galilean invariance holds. That is, and (from observation).
-
(1)
This equation is valid for all .
Let,
-
(a)
By using equation (a) in (1), we get
-
(b)
Transformation of and
Now, we have to find the transformation(if any) of charge and current densities under Galilean transformation.
Let, and be charge and current densities with respective to S frame respectively.
Then, and be the charge and current densities in frame respectively.
We know,
Again, we know that
Thus,
Thus, we have
-
(c)
and
-
(d)
Transformation of , and
We know that . Here, . Since q'=q, and t'=t(Galilean principle), we get
-
(e)
Now, Let
t'=t
As,
Similarly,
Thus, we get
-
(f)
-
(g)
Transformation of Maxwell's equation
Now by using equations (a) to (g) we can easily see that Gauss's law and Ampère's circuital law doesn't preserve its form. That is, it non-invariant under Galilean transformation. Whereas, Gauss's law for magnetism and Faraday's law preserve its form under Galilean transformation. Thus, we can see that Maxwell's equation does not preserve its form under Galilean transformation, i.e., it is not invariant under Galilean transformation.
References
Citations
- Maxwell, James C. (1865). "A Dynamical Theory of the Electromagnetic Field". Philosophical Transactions of the Royal Society of London. 155: 459–512. doi:10.1098/rstl.1865.0008. S2CID 186207827.
- Resnick (2007). Introduction to Special Relativity. ISBN 978-8126511006.
Bibliography
- Resnick, Robert (1968), "Chapter I The experimental background", in Resnick, Robert (ed.), Introduction to Special Relativity (1st ed.), Wiley
- Bellac, M. Le, Galilean electromagnetism
- Jackson, John David, "chapter 11 Special theory of relativity", Classical Electrodynamics (3rd ed.), p. 516