Gaussian quantum Monte Carlo
Gaussian Quantum Monte Carlo is a quantum Monte Carlo method that shows a potential solution to the fermion sign problem without the deficiencies of alternative approaches. Instead of the Hilbert space, this method works in the space of density matrices that can be spanned by an over-complete basis of gaussian operators using only positive coefficients. Containing only quadratic forms of the fermionic operators, no anti-commuting variables occur and any quantum state can be expressed as a real probability distribution.[1][2]
References
- Corney, J. F.; Drummond, P. D. (2004-12-20). "Gaussian Quantum Monte Carlo Methods for Fermions and Bosons". Physical Review Letters. 93 (26): 260401. arXiv:quant-ph/0404052. Bibcode:2004PhRvL..93z0401C. doi:10.1103/PhysRevLett.93.260401. PMID 15697955. S2CID 17213264.
- Assaad, F. F.; Werner, P.; Corboz, P.; Gull, E.; Troyer, M. (2005-12-30). "Symmetry projection schemes for Gaussian Monte Carlo methods". Physical Review B. 72 (22): 224518. arXiv:cond-mat/0509149. Bibcode:2005PhRvB..72v4518A. doi:10.1103/PhysRevB.72.224518. S2CID 119396085.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.