History of the iron and steel industry in the United States

The US iron and steel industry has paralleled the industry in other countries in technological developments. In the 1800s, the US switched from charcoal to coke in ore smelting, adopted the Bessemer process, and saw the rise of very large integrated steel mills. In the 20th century, the US industry successively adopted the open hearth furnace, then the basic oxygen steelmaking process. Since the American industry peaked in the 1940s and 1950s, the US industry has shifted to small mini-mills and specialty mills, using iron and steel scrap as feedstock, rather than iron ore.

Graph of US iron and steel production, 1900–2014, data from USGS

Colonial

Iron manufacture before the 19th century required charcoal, and Britain's once-vast forests could no longer supply enough charcoal for the nation's increasing need for iron. By 1700, Britain was becoming increasingly dependent on iron imported from its sometimes-adversary Sweden. Britain looked to the seemingly limitless forests of its American colonies to supply Britain with iron. British investors started an iron furnace near Perryville, Maryland, which in 1718 started exporting iron back to Britain. That success prompted formation of more companies, which built numerous iron furnaces around Chesapeake Bay, supplied by bog iron ore, which was widespread. By 1751, Virginia and Maryland were exporting 2,950 tons of pig iron to Britain each year; at the time, British iron production was about 20,000 tons per year.[1]

While the Chesapeake Bay furnaces were established for export, iron furnaces were established in the 1700s throughout the American colonies for domestic consumption. Iron furnaces were located along rivers to supply water power. Also required were forests for charcoal, iron ore, and limestone for flux. In addition, the furnace needed to be close to a major market or close to water transport.

British business interests were split on colonial iron: manufacturers appreciated the lower prices due to colonial imports, but the British iron and steel industry objected to the competition. Parliament compromised in the Iron Act of 1750, which eliminated the import duty on colonial pig iron, but barred the manufacture of steel or of iron plate in the colonies. The law was widely ignored by colonial governments.

By 1776, up to 80 iron furnaces throughout the American colonies were producing about as much iron as Britain itself. If one estimate of 30,000 tons of iron each year is accurate, then the newly formed United States was the world's third-largest iron producer, after Sweden and Russia.

Notable pre-19th-century iron furnaces in the US

Name Location Start Date End Date
Boonton Iron Works Boonton, New Jersey circa 1770 1911
Catoctin Furnace Catoctin Furnace, Maryland 1774 1903
Falling Creek Ironworks Chesterfield County, Virginia 1622 1622
Furnace Mountain Loudoun County, Virginia circa 1790 circa 1870
Hunter's Ironworks Falmouth, Virginia circa 1750 1782
Huntingdon Furnace Huntingdon County, Pennsylvania 1796 circa 1880
Neabsco Iron Works Woodbridge, Virginia circa 1737
New Roxbury Ironworks Site Woodstock, Connecticut 1757
Patuxent Iron Works Anne Arundel County, Maryland 1705 1856
Principio Furnace Cecil County, Maryland 1719 1925
Stirling Iron Works Monroe, New York 1761 1842
Taunton Iron Works Raynham, Massachusetts 1656 1876
Washington Iron Furnace Rocky Mount, Virginia circa 1770

Early republic

Because wood for charcoal was available throughout the eastern states, iron smelters were located close to iron ore. Although the bog iron ores mined in colonial days were widespread, the deposits were also small, and quickly exhausted. In the late 1700s the iron furnaces moved away from the bog iron ore of the coastal swamps, to larger iron ore deposits further inland. Inland locations also allowed the furnaces to be closer to sources of limestone, which was used as a flux in iron smelting. The proximity to larger ore deposits favored larger, more permanent iron smelters.[2]

Most US iron smelting before 1850 took place near iron deposits in eastern Pennsylvania, New York, and northern New Jersey.[3] New Jersey's principal iron ore district, at Dover, supported iron smelters beginning in 1710. The Cornwall Iron Furnace in Pennsylvania was established next to an iron deposit. The Adirondack iron ore district of New York also supported iron smelters.[4]

The movement away from charcoal in US iron smelting began in 1827, when a puddling furnace in Phoenixville, Pennsylvania started using anthracite coal. Blast furnaces continued to use only charcoal until about 1840, when coke from coal started replacing charcoal as the fuel and reducing agent.[5] Coke has a higher crushing strength than charcoal, allowing larger smelting furnaces.[6] Because iron and steel-making at the time consumed more coal than iron ore, the steel mills moved closer to the coal mines to minimize transportation costs. A problem of coke was that it carried impurities such as sulfur, which degraded the quality of the steel. Although coke quickly became the dominant fuel for iron-smelting, in 1884 charcoal was still used to make ten percent of iron and steel in the US. The use of cmall scale until 1945.

The Lackawanna Valley in Pennsylvania was rich in anthracite coal and iron deposits. Brothers George W. Scranton and Seldon T. Scranton moved to the valley in 1840 and settled in the five-house town of Slocum's Hollow (now Scranton) to establish an iron forge.[7][8] The most common processes for creating blister steel and crucible steel were slow and extremely expensive. The Scrantons instead used the new "hot blast method," developed in Scotland in 1828.[7] The hot blast method solved the problem of impurities from the coke, by burning them off. The Scrantons also experimented with anthracite to make steel, rather than charcoal or bituminous coal.[9]

Notable early 19th-century iron furnaces in the US

Name Location Start Date End Date
Bradys Bend Iron Company Furnaces Armstrong County, Pennsylvania 1840 1873
Catherine Furnace Newport, Page County, Virginia 1836 1885
Curtin Village Centre County, Pennsylvania 1810 1921
Elizabeth Furnace Fort Valley, Virginia 1836 1888
Georges Creek Coal and Iron Company Lonaconing, Maryland 1837 1855
Isabella Furnace Chester County, Pennsylvania 1835 1894
Joppa Iron Works Baltimore County, Maryland circa 1817 circa 1865
Longdale Furnace Historic District Clifton Forge, Virginia 1827
Mount Savage Iron Works Mount Savage, Maryland 1837 circa 1870
Nassawango Iron Furnace Site Snow Hill, Maryland 1830 1849
Richmond Furnace Historical and Archeological District Richmond, Massachusetts 1829 1923
Roaring Run Furnace Eagle Rock, Virginia 1832
Scranton Iron Furnaces Scranton, Pennsylvania 1848 1902
Tredegar Iron Works Richmond, Virginia 1837 circa 1950

Pittsburgh

Bethlehem Steel in Bethlehem, Pennsylvania was one of the world's largest manufacturers of steel.

The replacement of charcoal with coal in the steel-making process revolutionized the industry, and tied steelmaking to coal-mining areas. In the 1800s, making a ton of steel required a greater weight of coal than iron ore. Therefore, it was more economical to locate closer to the coal mines. Pittsburgh, surrounded by large coal deposits and at the junction of three navigable rivers, was an ideal location for steelmaking.

Great Lakes ports

The tremendous iron ore deposits around Lake Superior were located far from coal deposits, and so were shipped to ports on the southern Great Lakes that were closer to the coal mines of Pennsylvania, Ohio, Indiana, and Illinois. Large integrated steel mills were built in Chicago, Detroit, Gary, Cleveland, and Buffalo, to handle the Lake Superior ore.

Cleveland's first blast furnace was built in 1859. In 1860, the steel mill employed 374 workers. By 1880, Cleveland was a major steel producer, with ten steel mills and 3,000 steelworkers.[10]

The city of Gary, Indiana was founded in 1906 by United States Steel Corporation to serve the Gary Works.

The Lackawanna Steel Company built a large integrated steel works near Buffalo, which began producing steel from Lake Superior ore in 1903. The company had made steel in Scranton, Pennsylvania since 1840, but moved to provide easier access to iron ore, and in an unsuccessful attempt to avoid labor troubles.

Birmingham, Alabama

Birmingham, Alabama became a major steel producer in the late 1800s, using locally mined coal and iron ore. The iron ore was mined from the Clinton Formation of Silurian age.

Notable defunct late 19th-century iron and steel furnaces in the US

Name Owners Location Start Date End Date
Antrim Iron Company Mancelona, Michigan 1886 1945
Bellefonte Furnace Bellefonte, Pennsylvania 1888 1910
Bethlehem Works Bethlehem Steel Bethlehem, Pennsylvania 1857 1995
Brierfield Furnace Brierfield, Alabama 1861 1894
Callie Furnace Glen Wilton, Virginia circa 1873 1884
Cornwall Furnace Cedar Bluff, Alabama circa 1862 1874
Endor Iron Furnace Cumnock, North Carolina 1861 1971
Fayette Historic State Park Fayette, Michigan 1867 1891
Homestead Steel Works Carnegie Steel, US Steel Homestead, Pennsylvania 1881 1986
Janney Furnace Park Ohatchee, Alabama 1863 1864
Nittany Furnace Centre County, Pennsylvania 1888 1911
Oregon Iron Company Lake Oswego, Oregon 1867 1893
Sloss Furnace Birmingham, Alabama 1882 1971
South Works US Steel Chicago, Illinois 1857 1992
Sparrows Point, Maryland Bethlehem Steel Baltimore County, Maryland 1889 2012

World War II and after

Percentages of US steelmaking processes, 1900–2012. Data from USGS and US Bureau of Mines Minerals Yearbooks

As the only major steel maker not harmed during the war, the United States iron and steel industry reached its maximum world importance during and just after World War II. In 1945, the US produced 67% of the world's pig iron, and 72% of the steel. By comparison, 2014 percentages were 2.4% of the pig iron, and 5.3% of the steel production.

Although US iron and steel output continued to grow overall through the 1950s and 1960s, the world steel industry grew much faster, and the US share of world production shrank. In the 1960s, the US became a major importer of steel, mostly from Japan.

Contraction: 1979-1984

US production of iron and steel peaked in 1973, when the US industry produced a combined total of 229 million metric tons of iron and steel. But US iron and steel production dropped drastically during the recession of the late 1970s and early 1980s. From a combined iron and steel production of 203 million tons in 1979, US output fell almost in half, to 107 million tons in 1982. Some steel companies declared bankruptcy, and many permanently closed steelmaking plants. By 1989, US combined iron and steel production recovered to 142 million tons, a much lower level than in the 1960s and 1970s.

The causes of the sudden decline are disputed. Among the many causes alleged have been: dumping of foreign imports below cost, high labor costs, poor management, unfavorable tax policies, and costs of environmental controls. One recent study found that hypotheses based on declining domestic production (such as foreign imports displacing domestic product) cannot explain the magnitude of the decline in employment, as shipments of domestic steel products in 2005 were similar to the level of the early 1960s, whereas employment in the domestic sector had plummeted by approximately 75% over the same time period. Instead, the majority of the losses could be accounted for by rising productivity, principally through technological efficiencies and the shift from traditional steel plants to mini mills.[11]

Cleveland had nine integrated steel mills in the 1970s. US Steel closed one mill in 1979, then shut down its six remaining Cleveland mills in 1984. Cleveland's two remaining steel producers, Republic Steel and Jones & Laughlin, merged to form LTV Steel in June 1984. LTV Steel declared bankruptcy in 2000. The operation, on both sides of the Cuyahoga River, is Cleveland's last remaining integrated steel mill, now owned by Cleveland Cliffs.

Transformation

The number of integrated steel mills has continued to decline, and in 2014, only 11 integrated mills were operating in the US. Most of the steel produced has been by the growing number of mini-mills, also called specialty mills, which in 2014 numbered 113. In 1981, mini-mills produced an estimated 15% of US steel.[12] Since 2002, steel produced by electric arc furnace, the process used by the mini-mills, has produced more than half the steel made in the US. Many companies operating integrated mills also have mini-mills.

A number of bankruptcies and acquisitions between 2000 and 2014 reversed the trend of industry fragmentation. In 2000, the top three steelmakers (Nucor, US Steel, and Bethlehem Steel) had 28% of the steelmaking capacity, and the top ten had 58%. By 2014, the top three (Nucor, ArcelorMittal, and US Steel) accounted for 56% of the steel capacity, and the top ten 87%.[13]

Notable defunct 20th-century steel furnaces in the US

Name Owners Location Start Date End Date
Duluth Works US Steel Duluth, Minnesota 1915 1987
Fontana blast furnace Kaiser Steel Fontana, California 1942 circa 1982[14]
Geneva Steel mill US Steel Vineyard, Utah 1944 2001

See also

References

  1. Norman J. G. Pounds and William N Parker, Coal and Steel in Western Europe (Bloomington: Indiana Univ. Press, 1957) 22.
  2. US Geological Survey, 2001, Silent reminders, Geologic Wonders of the George Washington and Jefferson National Forests, No. 3.
  3. John S.Brown, "Ore deposits of the northeastern United States," in, John D. Ridge (ed.), Ore Deposits of the United States, 1933-1967 (New York:American Institute of Mining Engineers, 1970) 2-4.
  4. Martha S. Carr and Carl E. Dutton, 1959, Iron-Ore Resources of the United States, Including Alaska and Puerto Rico, US Geological Survey, Bulletin 1082-C, p.66-67.
  5. James M. Swank, "The manufacture of iron and steel in the United States," in: Mineral Resources of the United States, 1883 and 1884, US Geological Survey, 1885, p.247.
  6. W. H. Dennis, 100 Years of Metallurgy (Chicago: Aldine, 1963) 79-80.
  7. Yeomans, "36 Hours: Scranton, Pa.," New York Times, November 1, 2002.
  8. "The Bitter Battle," Time, October 19, 1962.
  9. Lewis, "The Early History of the Lackawanna Iron and Coal Company: A Study in Technological Adaptation," Pennsylvania Magazine of History and Biography, October 1972.
  10. Iron and steel industry, Encyclopedia of Cleveland, accessed 5 Nov. 2015.
  11. Collard-Wexler, Allan; De Loecker, Jan (January 2015). "Reallocation and Technology: Evidence from the US Steel Industry". American Economic Review. 105 (1): 131–71. doi:10.1257/aer.20130090.
  12. Linda Chaves, "The rise of mini steel mills," New York Times, 23 Sept. 1981.
  13. 2014 Arcelormittal USA Factbook Archived 2015-09-15 at the Wayback Machine.
  14. https://articles.latimes.com/1987-02-09/business/fi-1840_1_kaiser-steel

Further reading

  • Hoerr, John P. And the Wolf Finally Came: The Decline of the American Steel Industry (1988) excerpt and text search
  • Hogan, William T. Economic History of the Iron and Steel Industry in the United States (5 vol 1971) monumental detail
  • Ingham, John N. The Iron Barons: A Social Analysis of an American Urban Elite, 1874-1965 (1978)
  • Krass, Peter. Carnegie (2002). ISBN 0-471-38630-8.
  • Livesay, Harold C. Andrew Carnegie and the Rise of Big Business, 2nd Edition (1999). ISBN 0-321-43287-8.
  • Misa, Thomas J. A Nation of Steel: The Making of Modern America, 1865–1925 (1995) Chapter 1 "The Dominance of Rails"
  • Nasaw, David. Andrew Carnegie (The Penguin Press, 2006).
  • Paskoff, Paul F. Iron and Steel in the Nineteenth Century (Encyclopedia of American Business History and Biography) (1989) 385 pp; biographies and brief corporate histories
  • Rogers, Robert P. An Economic History of the American Steel Industry (2009) excerpt and text search
  • Scamehorn, H. Lee. Mill & Mine: The Cf&I in the Twentieth Century University of Nebraska Press, 1992 online version
  • Scheuerman, William. The Steel Crisis: The Economics and Politics of a Declining Industry (1986) online
  • Seely, Bruce E., ed The Iron and Steel Industry in the 20th Century (1994) (Encyclopedia of American Business History and Biography)
  • Temin, Peter. Iron and Steel in Nineteenth-Century America, An Economic Inquiry (1964)
  • Wall, Joseph Frazier. Andrew Carnegie (1989). ISBN 0-8229-5904-6.
  • Warren, Kenneth, Big Steel: The First Century of the United States Steel Corporation, 1901–2001. (University of Pittsburgh Press, 2001) online review
  • Warren, Kenneth. Bethlehem Steel: Builder and Arsenal of America (2010) excerpt and text search
  • Warren, Kenneth. The American Steel Industry, 1850–1970: A Geographical Interpretation (1973) (ISBN 0198232144)
  • Whaples, Robert. "Andrew Carnegie", EH.Net Encyclopedia of Economic and Business History online
  • U.S. Steel's History of U.S. Steel
  • Urofsky, Melvin I. Big Steel and the Wilson Administration: A Study in Business-Government Relations (1969) online

U.S. Labor

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.