Instance-based learning
In machine learning, instance-based learning (sometimes called memory-based learning[1]) is a family of learning algorithms that, instead of performing explicit generalization, compares new problem instances with instances seen in training, which have been stored in memory.
It is called instance-based because it constructs hypotheses directly from the training instances themselves.[2] This means that the hypothesis complexity can grow with the data:[2] in the worst case, a hypothesis is a list of n training items and the computational complexity of classifying a single new instance is O(n). One advantage that instance-based learning has over other methods of machine learning is its ability to adapt its model to previously unseen data. Instance-based learners may simply store a new instance or throw an old instance away.
Examples of instance-based learning algorithm are the k-nearest neighbors algorithm, kernel machines and RBF networks.[3]:ch. 8 These store (a subset of) their training set; when predicting a value/class for a new instance, they compute distances or similarities between this instance and the training instances to make a decision.
To battle the memory complexity of storing all training instances, as well as the risk of overfitting to noise in the training set, instance reduction algorithms have been proposed.[4]
See also
References
- Walter Daelemans; Antal van den Bosch (2005). Memory-Based Language Processing. Cambridge University Press.
- Stuart Russell and Peter Norvig (2003). Artificial Intelligence: A Modern Approach, second edition, p. 733. Prentice Hall. ISBN 0-13-080302-2
- Tom Mitchell (1997). Machine Learning. McGraw-Hill.
- D. Randall Wilson; Tony R. Martinez (2000). "Reduction techniques for instance-based learning algorithms". Machine Learning.