K-space (functional analysis)
In mathematics, more specifically in functional analysis, a K-space is an F-space such that every extension of F-spaces (or twisted sum) of the form
is equivalent to the trivial one[1]
where is the real line.
Examples
- Finite dimensional Banach spaces are K-spaces.
- The spaces for are K-spaces.[1]
- N. J. Kalton and N. P. Roberts proved that the Banach space is not a K-space.[1]
See also
References
- Kalton, N. J.; Peck, N. T.; Roberts, James W. An F-space sampler. London Mathematical Society Lecture Note Series, 89. Cambridge University Press, Cambridge, 1984. xii+240 pp. ISBN 0-521-27585-7
Gelfand–Shilov space
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.