Lava Formation

The Lava Formation is a Mesozoic geologic formation in Lithuania. Fish remains are among the fossils that have been recovered from the formation, although none have yet been referred to a specific genus.[8][9][10] The Jotvingiai Group Toarcian deposits were deposited likely in a shallow lacustrine basin or a near sea freshwater lagoon, with the other environment of the formation consisting of shallow marine conditions, seashore barriers and dunes, on a hot and humid climate.[11] Due to the abundant presence of deltaic sedimens (Including Plant fragments of Protophyllocladoxylon? sp.) on the upper part it is considered to be related to the retry of the sea level, as in the Polish equivalent formation, the Ciechocinek Formation.The climate at the time of deposition was strongly seasonal, probably with moonsonal periods.[12] There is a great amountof kaolinite content, being present laterally in the basin, decreasing and lefting space to increasing smectite to the south-west of the formation. On the other hand, there is a great amount of coarsest sediments, what consist mostly on sands.[13][14]

Lava Formation
Stratigraphic range: Lower to Middle Toarcian 180 Ma
[1]
Strata on the Curonian Spit
TypeGeological formation
Unit ofJotvingiai Group[2]
UnderliesSkalviai Group
OverliesNeringa Formation
Thickness45 m [3]
Lithology
PrimarySandstone and clay with a coaly admixture and the inclusion of wood remains.[4][5][6]
OtherShallow, continental basins with sandy-clayey sediments deposited with traces of breaks and weathering. Upper part is dominated by argillaceous sediments. Cemented sandstones with interlayers of kaolinite-hydromica clays.[7]
Location
RegionCuronian Spit
Country Lithuania
 Russia

Paleogeography

Panoramic with the deposits at the background

While most of Europe was occupied by sea, Lithuania has a dominated continental regime, which lasted about 32 million years.[15] The low elevation lands where flooded along the Toarcian rise and fall of the sea level, measured also on the Ciechocinek Formation, where the decomposition products were taken to separate depressions where they accumulated lagoon sediments, along with marine deposition of the sea basin lying on southwest of Lithuania.[15] The southwest was composed mostly by a series of deltaic successions, along with several unidentified water bodies.[16] The deposition of the formation shows a transition from deltaic to basinal facies at the west, where the sea shallow bays flooded the region, while in the north-east the land remained.[16] The Lava Formation shelf had a depth of 200–250 m. The climate was humid, slightly warmer than in average latitudes, with a drier climate periods.[15] In this climate, lush vegetation grew on the edges of the basins, leading to the formation of brown coal interlayers. Aalenian-Oxfordian marine activity led to changes, with the rise of the sea level, until it retreat back on the southwest near the Cretaceous strata.[15]

Spores

Genus Species Stratigraphic position Material Notes Images

Chasmatosporites[17]

  • Chasmatosporites apertus
  • Chasmatosporites hians
  • Nida, Curonian Split

Spores

Affinities with the Gymnospermopsida.

Perinopollenites[17]

  • Perinopollenites sp sp. nov.
  • Nida, Curonian Split

Pollen

Affinities with the Gymnospermopsida.

Acanthotriletes[17][18]

  • Acanthotriletes elatus
  • Nida, Curonian Split

Spores

Affinities with the Lycophyta. Abundant genus, related to freshwater deposits

Hymenozonotriletes[17]

  • Hymenozonotriletes dalinkevidiusi
  • Hymenozonotriletes speciosus
  • Nida, Curonian Split

Spores

Affinities with the Lycophyta. Abundant genus, related to freshwater deposits

Leptolepidites[17][18]

  • Leptolepidites major
  • Leptolepidites sp sp. nov.
  • Nida, Curonian Split

Spores

Affinities with the Lycopsida. Abundant genus, related to freshwater deposits

Uvaesporites[17]

  • Uvaesporites argenteaeformis
  • Nida, Curonian Split

Spores

Affinities with the Lycopsida. Abundant genus, related to freshwater deposits

Staplinisporites[18]

  • Staplinisporites caminus
  • Nida, Curonian Split

Spores

Affinities with the Bryophyta.

Lycopodiumsporites[17][18]

  • Lycopodiumsporites semimuris
  • Nida, Curonian Split

Spores

Affinities with the Lycopodiaceae. Most abundant Moss Spores on the Strata

Densoisporites[17][18]

  • Densoisporites crassus
  • Nida, Curonian Split

Spores

Affinities with the Selaginellaceae. Relatively abundant

Foveosporites[17][18]

  • Foveosporites microreticulatus
  • Nida, Curonian Split

Spores

Affinities with the Selaginellaceae. Abundant and related with Deltaic facies

Heliosporites[17]

  • Heliosporites altmarkensis
  • Nida, Curonian Split

Spores

Affinities with the Selaginellaceae. Abundant and related with Deltaic facies

Cingulatisporites[17]

  • Cingulatisporites scabratus
  • Cingulatisporites sp sp. nov.
  • Nida, Curonian Split

Spores

Affinities with the Pteridopsida. Relatively abundant

Leiotriletes[17]

  • Leiotriletes rotundiformis
  • Nida, Curonian Split

Spores

Affinities with the Pteridopsida. Relatively abundant

Leiozonotriletes[17]

  • Leiozonotriletes sp sp. nov.
  • Nida, Curonian Split

Spores

Affinities with the Pteridopsida. Relatively abundant

Cyathidites[17]

  • Cyathidites minor
  • Nida, Curonian Split

Spores

Affinities with the Pteridopsida. Among the smallest and most difficult to found genera on the layers of the Formation.

Pilosisporites[17]

  • Pilosisporites brevipapillosus
  • Nida, Curonian Split

Spores

Affinities with the Pteridophyta.

Klukisporites[17][18]

  • Klukisporites sp sp. nov.
  • Nida, Curonian Split

Spores

Affinities with the Schizaeaceae.

Camptotriletes[17][18]

  • Camptotriletes anagrammensis
  • Camptotriletes cerebriformis
  • Camptotriletes triangularis
  • Nida, Curonian Split

Spores

Affinities with the Marattiaceae.

Matonisporites[17][18]

  • Matonisporites phlebopteroides
  • Nida, Curonian Split

Spores

Affinities with the Matoniaceae.

Paleoconiferus[17][18]

  • Paleoconiferus sp sp. nov.
  • Nida, Curonian Split

Pollen

Affinities with the Pinopsida.

Paleopicea[17][18]

  • Paleopicea sp sp. nov.
  • Nida, Curonian Split

Pollen

Affinities with the Pinaceae. Relatively abundant Pinaceae Pollen, appears specially on Kaolinite-abundant strata.

Pseudopicea[17][18]

  • Pseudopicea sp. sp. nov.
  • Nida, Curonian Split

Pollen

Affinities with the Pinaceae. Relatively abundant Pinaceae Pollen, appears specially on Kaolinite-abundant strata.

Protopinus[17][18]

  • Protopinus sp sp. nov.
  • Nida, Curonian Split

Pollen

Affinities with the Pinaceae.

Pseudopinus[17][18]

  • Pseudopinus oblatinoides
  • Nida, Curonian Split

Pollen

Affinities with the Pinaceae.

Protopodocarpus[17][18]

  • Protopodocarpus sp sp. nov.
  • Nida, Curonian Split

Pollen

Affinities with the Podocarpaceae.

Classopollis[17][18]

  • Classopollis sp.1 sp. nov.
  • Classopollis sp.2 sp. nov.
  • Classopollis sp.3 sp. nov.
  • Nida, Curonian Split

Pollen

Affinities with the Cheirolepidiaceae.

Plantae

Genus Species Stratigraphic position Material Notes Images

Lycopodium[17][18]

  • Lycopodium sp sp. nov.
  • Nida, Curonian Split

Stems

Affinities with the Lycopodiaceae inside Lycopodiophyta. Moss, relatively abundant and relates with freshwater strata. Related to humid Floors

Lygodium[17]

  • Lygodium compactum
  • Nida, Curonian Split

Leaves

Affinities with the Lygodiaceae inside Schizaeales. A climbing Fern

Osmunda[17][18]

  • Osmunda sp sp. nov.
  • Osmunda sp.1 sp. nov.
  • Osmunda sp.2 sp. nov.
  • Nida, Curonian Split

Leaves

Affinities with the Osmundaceae inside Osmundopsida. Abundant Ferns

Clathropteris[3][12][17][18]

  • Clathropteris obovata
  • Clathropteris "sp. 1"
  • Clathropteris "sp. 2"
  • Nida, Curonian Split

Leaves

Affinities with the Dipteridaceae inside Gleicheniales. Large Ferns, commonly found forming large colonies on near water environments. There are the most common flora on the Lava Formation.

Clathropteris

Dictyophyllum[17][18]

  • Dictyophyllum sp sp. nov.
  • Nida, Curonian Split

Leaves

Affinities with the Dipteridaceae inside Gleicheniales.

Phlebopteris[3][12][18]

  • Phlebopteris cf. smithii
  • Nida, Curonian Split

Leaves

Affinities with the Matoniaceae inside Gleicheniales.

Marattiopsis[17][18]

  • Marattiopsis scabratus
  • Nida, Curonian Split

Leaves

Affinities with the Marattiaceae inside Marattiales.

Coniopteris[17][18]

  • Coniopteris sp sp. nov.
  • Nida, Curonian Split

Leaves

Affinities with the Dicksoniaceae inside Cyatheales. Tree Ferns, relatively Abundant

Ginkgo[3][12]

  • Ginkgo acuta
  • Ginkgo "sp. 1"
  • Nida, Curonian Split

Leaves

Affinities with the Ginkgoaceae inside Ginkgoales. Large to medium Arboreal trees, common on the Fennoscandinavian realm, but also on the Siberian strata.

Picea[17][18]

  • Picea sp sp. nov.
  • Picea sp.1 sp. nov.
  • Picea sp.2 sp. nov.
  • Nida, Curonian Split

Cones

Affinities with the Piceoideae inside Coniferales.

Pinus[17][18]

  • Pinus sp sp. nov.
  • Nida, Curonian Split

Cones

Affinities with the Pinaceae inside Coniferales.

Sciadopitys[17][18]

  • Sciadopitys dalinkeviciusi
  • Sciadopitys speciosus
  • Sciadopitys mesozoicus
  • Nida, Curonian Split
  • Leaves
  • Cones

Affinities with the Sciadopityaceae inside Coniferales.

Podozamites[17][18]

  • Podozamites sp sp. nov.
  • Nida, Curonian Split

Leaves

Affinities with the Podocarpaceae inside Coniferales.

Elatocladus[3][12][18]

  • Elatocladus sp.
  • Nida, Curonian Split

Leaves

Affinities with the Podocarpaceae inside Coniferales.

Actinopterygii

Color key
Taxon Reclassified taxon Taxon falsely reported as present Dubious taxon or junior synonym Ichnotaxon Ootaxon Morphotaxon
Notes
Uncertain or tentative taxa are in small text; crossed out taxa are discredited.
Genus Species Stratigraphic Position Material Notes Images

Pholidophoridae[3][12][19]

Pholidophoriformes Indeterminate

Nida, Curonian Split

Teeth & Scales

Bony fishes of the family Pholidophoriformes inside Pachycormiformes. Fishes of small size, the most abundant on the strata along the Toarcian European Realm.

Semionotidae[3][12]

Semionotiformes Indeterminate

Nida, Curonian Split

Teeth & Scales

bony fish of the family Semionotiformes

Macrosemiiformes[3][12]

Macrosemiiformes Indeterminate

Nida, Curonian Split

Teeth & Scales

Bony fish of the family Semionotiformes

See also

References

  1. Grigelis, A. L. G. I. M. A. N. T. A. S. (2007). Geology of Lithuania (Lietuva). Geology of the Land and Sea Areas of Northern Europe: A collection of short descriptions of the geology of countries and sea are as within the region covered by the, 1(4), 51-55.
  2. 1. Grigelis, A. (Ed.). 1982: Geology of the Soviet Baltic Republics. 340 pp
  3. Grigelis, A. 1994a. Jura. In: Lietuvos geologija. Grigelis, A. & Kadūnas, V. (eds.). Mokslo ir enciklopedijų leidykla, Vilnius, 139-153 [in Lithuanian].
  4. Šimkevičius, P. 2004. Triasas ir jura. In: Lietuvos Žemės gelmių raida ir ištekliai. Geologijos ir geografijos institutas, Vilnius, 81-90 [in Lithuanian].
  5. Paškevičius, J. 1997. The geology of the Baltic Republics. Lietuvos geologijos tarnyba, Vilnius, 387
  6. Lukševičs, E., Stinkulis, Ģ., Mūrnieks, A., & Popovs, K. (2012). Geological evolution of the Baltic Artesian Basin. Highlights of groundwater research in the Baltic Artesian Basin, 7-52.
  7. Zhamoida, V., Sivkov, V., & Nesterova, E. (2017). Mineral resources of the Kaliningrad Region. In Terrestrial and Inland Water Environment of the Kaliningrad Region (pp. 13-32). Springer, Cham.
  8. McCann, T., 2008. The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic. The Geology of Central Europe. Volume 2: Mesozoic and Cenozoic. vol. 2. The Geological Society of London, pp. 881.
  9. LITHUANIA, L. O. J. I. (1994). Lower and Middle Jurassic. Geologija, 17.
  10. Wrona, R., Kröger, B., Berkowski, B., Malchus, N., Kowalke, T., Harzhauser, M., ... & Valiukevičius, J. (2004). Chongyu Yin, Stefan Bengtson, and Zhao Yue. ACTA PALAEONTOLOGICA POLONICA, 49, 4.
  11. Šimkevičius, P., Ahlberg, A., & Grigelis, A. (2003). Jurassic smectite and kaolinite trends of the East European Platform: implications for palaeobathymetry and palaeoclimate. Terra Nova, 15(4), 225-229.
  12. Simkevicius, P., 1998. Jurassic of the SE Baltic: Lithology and Clay Minerals. Lithuanian Institute of Geology, Vilnius
  13. Satkūnas, J., & Nicius, A. (2007, April). Jurassic geological heritage in Lithuania. In Lithuanian-Latvian field seminar: geological heritage of the Venta River Valley (pp. 12-18).
  14. Grigelis, A., & Suveizdis, P. (1993). Catalogue of Permian–Palaeogene Stratotypes of the East Baltic Area.
  15. Kavoliutė, F. (2012). Lietuvos gamtinis pamatas.
  16. Suveizdis P. Lietuvos tektoninė sandara, V., 2003.
  17. Venozhinskene,A.I. et al. (1971) Palynological indications of the Early Jurassic deposits in the southern part of the Balticum. (In:-Palynological Researches in the Baltic Soviet Republics. T.D.Bartosh, editor) [ Palinologicheskoe Obosnovaie Nizhneyurskikh otlozhenii Yuzhnboi Pribaltiki. (In-Palinologi Cheskie Issledovaniya v Pribaltike. T.D.Bartosh,editor) ] Trudy Ministerstvo Geologii SSR,Akademiya Nauk SSR,Zinatne P. 19- 30
  18. Venozhinskene,A.I. et al. (1978) Stratigraphy of Upper Triassic, (Rhaetian,), Jurassic, (Pre Middle Callovian), continental deposits of the western part of the southern Baltic area. (In: Phanerozoic Stratigraphy of the Baltic States Paleontological Assemblages, Structure and Composition of Sediments. V.S.Sorokin, editor) [ Stratigrafiya verkhetriasovykh (retskikh) Yurskikh (Dosrednekelloveiskikh) kontinental'nykh otlozhenii Zaladnoi Chasti Yuzhnoi Pribaltiki. (In: Stratigrafiya Fanerozoya Pribaltiki Paleontologicheskie Kompleksy, Stroenie i Sostav Otlotzhenii. V.S. Sorokin, editor) ] Trudy Ministerstvo Geologii SSR,Akademiya Nauk SSR,VNIIMGG P. 127- 138
  19. Feldman-Olszewska, A. (1998). Lower and Middle Jurassic. Palaeogeographical Atlas of the Epicontinental Permian and Mesozoic in Poland (eds. R. Dadlez, S. Marek and J. Pokorski). Pañstw. Inst. Geol.

Further reading

  • Weishampel, David B.; Dodson, Peter; and Osmólska, Halszka (eds.): The Dinosauria, 2nd, Berkeley: University of California Press. 861 pp. ISBN 0-520-24209-2.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.