Leap year starting on Sunday

A leap year starting on Sunday is any year with 366 days (i.e. it includes 29 February) that begins on Sunday, 1 January, and ends on Monday, 31 December. Its dominical letters hence are AG. The most recent year of such kind was 2012 and the next one will be 2040 in the Gregorian calendar[1] or, likewise, 1996 and 2024 in the obsolete Julian calendar.

This is the only leap year with three occurrences of Friday the 13th. Any common year starting on a Thursday shares this characteristic. The instances of Friday the 13th in this leap year are three months (13 weeks) apart: in January, April, and July. This leap year also has the shortest gap between Leap Day (February 29) and the start of Daylight Saving Time in Europe, only by 25 days. In this leap year, the leap day, U.S. Independence Day, and Halloween are on a Wednesday, Thanksgiving is on its earliest possible date (November 22), and Christmas is on a Tuesday.

Calendars

Calendar for any leap year starting on Sunday,
presented as common in many English-speaking areas

01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
01020304
05060708091011
12131415161718
19202122232425
26272829  
 
010203
04050607080910
11121314151617
18192021222324
25262728293031
 
01020304050607
08091011121314
15161718192021
22232425262728
2930  
 
0102030405
06070809101112
13141516171819
20212223242526
2728293031  
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
 
01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
01020304
05060708091011
12131415161718
19202122232425
262728293031  
 
01
02030405060708
09101112131415
16171819202122
23242526272829
30  
010203040506
07080910111213
14151617181920
21222324252627
28293031  
 
010203
04050607080910
11121314151617
18192021222324
252627282930
 
01
02030405060708
09101112131415
16171819202122
23242526272829
3031  

ISO 8601-conformant calendar with week numbers for
any leap year starting on Sunday (dominical letter AG)

01
02030405060708
09101112131415
16171819202122
23242526272829
3031  
0102030405
06070809101112
13141516171819
20212223242526
272829  
 
01020304
05060708091011
12131415161718
19202122232425
262728293031  
 
01
02030405060708
09101112131415
16171819202122
23242526272829
30  
010203040506
07080910111213
14151617181920
21222324252627
28293031  
 
010203
04050607080910
11121314151617
18192021222324
252627282930
 
01
02030405060708
09101112131415
16171819202122
23242526272829
3031  
0102030405
06070809101112
13141516171819
20212223242526
2728293031  
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
 
01020304050607
08091011121314
15161718192021
22232425262728
293031  
 
01020304
05060708091011
12131415161718
19202122232425
2627282930  
 
0102
03040506070809
10111213141516
17181920212223
24252627282930
31  

Applicable years

Gregorian Calendar

Leap years that begin on Sunday, along with those that start on Friday, occur most frequently: 15 out of the 97 (≈ 15.46%) total leap years in a 400-year cycle of the Gregorian calendar. Thus, the overall occurrence is 3.75% (15 out of 400).

Gregorian leap years starting on Sunday[1]
Decade 1st2nd3rd4th5th6th7th8th9th10th
17th century 1612164016681696
18th century 1708173617641792
19th century 1804183218601888
20th century 192819561984
21st century 2012204020682096
22nd century 2108213621642192

Julian Calendar

Like all leap year types, the one starting with 1 January on a Sunday occurs exactly once in a 28-year cycle in the Julian calendar, i.e., in 3.57% of years. As the Julian calendar repeats after 28 years, it will also repeat after 700 years, i.e., 25 cycles. The formula gives the year's position in the cycle ((year + 8) mod 28) + 1).

Julian leap years starting on Sunday
Decade 1st2nd3rd4th5th6th7th8th9th10th
15th century 1408143614641492
16th century 152015481576
17th century 1604163216601688
18th century 1716174417721800
19th century 182818561884
20th century 1912194019681996
21st century 202420522080
22nd century 2108213621642192

References

  1. Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
  2. Robert van Gent (2017). "The Mathematics of the ISO 8601 Calendar". Utrecht University, Department of Mathematics. Retrieved 20 July 2017.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.