Leonid Vaseršteĭn
Leonid Vaseršteĭn is a Russian-American mathematician, currently Professor of Mathematics at Penn State University.[1] His research is focused on algebra and dynamical systems. He is well known for providing a simple proof of the Quillen–Suslin theorem, a result in commutative algebra, first conjectured by Jean-Pierre Serre in 1955, and then proved by Daniel Quillen and Andrei Suslin in 1976.[2]
Vaseršteĭn got his Master's degree and doctorate in Moscow State University, where he was until 1978. He then moved to Europe and United States.
The Wasserstein metric was named after him by R.L. Dobrushin in 1970.
Selected publications
- Vaserstein, Leonid N. (1986). "On normal subgroups of Chevalley groups over commutative rings". Tohoku Math. J. 38 (2): 219–230. doi:10.2748/tmj/1178228489.
- Vaserstein, Leonid N. (1986). "Vector bundles and projective modules". Trans. Amer. Math. Soc. 294 (2): 749–755. doi:10.1090/s0002-9947-1986-0825734-3. MR 0825734.
- Vaserstein, L. N. (1986). "Normal subgroups of the general linear groups over von Neumann regular rings". Proc. Amer. Math. Soc. 96 (2): 209–214. doi:10.1090/s0002-9939-1986-0818445-7. MR 0818445.
- Vaserstein, L. N. (1986). "An answer to a question of M. Newman on matrix completion". Proc. Amer. Math. Soc. 97 (2): 189–196. doi:10.1090/s0002-9939-1986-0835863-1. MR 0835863.
- Vaserstein, L. N. (1988). "Reduction of a matrix depending on parameters to a diagonal form by addition operations". Proc. Amer. Math. Soc. 103 (3): 741–746. doi:10.1090/s0002-9939-1988-0947649-x. MR 0947649.
- Vaserstein, L. N. (1988). "Normal subgroups of orthogonal groups over commutative rings". Amer. J. Math. 110 (5): 955–973. doi:10.2307/2374699. JSTOR 2374699.
- Vaserstein, L. N. (1991). "Sums of cubes in polynomial rings". Math. Comp. 56 (193): 349–357. doi:10.1090/s0025-5718-1991-1052104-3. MR 1052104.
References
- "The stable rank of pullbacks". ResearchGate. researchgate.net. Retrieved 2019-04-23.
- Leavitt Path Algebras and Classical K-Theory. Springer. 2020. p. vii. ISBN 978-9811516108.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.