List of hyperaccumulators

Hyperaccumulators table – 1

hyperaccumulators and contaminants : Al, Ag, As, Be, Cr, Cu, Mn, Hg, Mo, naphthalene, Pb, Se, Zn – accumulation rates
ContaminantAccumulation rates (in mg/kg dry weight)Binomial nameEnglish nameH-Hyperaccumulator or A-Accumulator P-Precipitator T-TolerantNotesSources
AlA-Agrostis castellanaHighland Bent GrassAs(A), Mn(A), Pb(A), Zn(A)Origin Portugal.[1]
Al1000Hordeum vulgareBarley25 records of plants.[2][3]
AlHydrangea spp.Hydrangea (a.k.a. Hortensia)
AlAluminium concentrations in young leaves, mature leaves, old leaves, and roots were found to be 8.0, 9.2, 14.4, and 10.1 mg g1, respectively.[4]Melastoma malabathricum L.Blue Tongue, or Native LassiandraP competes with Al and reduces uptake.[5]
AlSolidago hispida (Solidago canadensis L.)Hairy GoldenrodOrigin Canada.[2][3]
Al100Vicia fabaHorse Bean[2][3]
Ag10-1200Salix miyabeanaWillowAg(T)Seemed able to adapt to high AgNO3 concentrations on a long timeline[6]
AgBrassica napusRapeseed plantCr, Hg, Pb, Se, ZnPhytoextraction[7][8]
AgSalix spp.Osier spp.Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalix);[9] Potassium ferrocyanide (S. babylonica L.)[10]Phytoextraction. Perchlorate (wetland halophytes)[8]
AgAmanita strobiliformisEuropean Pine Cone LepidellaAg(H)Macrofungi, Basidiomycete. Known from Europe, prefers calcareous areas[11]
Ag10-1200Brassica junceaIndian MustardAg(H)Can form alloys of silver-gold-copper[12]
As100Agrostis capillaris L.Common Bent Grass, Browntop. (= A. tenuris)Al(A), Mn(A), Pb(A), Zn(A)[3]
AsH-Agrostis castellanaHighland Bent GrassAl(A), Mn(A), Pb(A), Zn(A)Origin Portugal.[1]
As1000Agrostis tenerrima Trin.Colonial bentgrass4 records of plants[3][13]
As2-1300Cyanoboletus pulverulentusInk Stain Boletecontains dimethylarsinic acidEurope[14]
As27,000 (fronds)[15]Pteris vittata L.Ladder brake fern or Chinese brake fern26% of As in the soil removed after 20 weeks' plantation, about 90% As accumulated in fronds.[16]Root extracts reduce arsenate to arsenite.[17]
As100-7000Sarcosphaera coronariapink crown, violet crown-cup, or violet star cupAs(H)Ectomycorrhizal ascomycete, known from EuropeStijve et al., 1990, in Persoonia 14(2): 161-166, Borovička 2004 in Mykologický Sborník 81: 97-99.
BeNo reports found for accumulation[3]
CrAzolla spp.mosquito fern, duckweed fern, fairy moss, water fern[3][18]
CrH-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cu(H), Hg(A), Pb(A)Origin India. Aquatic emergent species.[1][19]
CrBrassica juncea L.Indian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)Cultivated in agriculture.[1][8][20]
CrBrassica napusRapeseed plantAg, Hg, Pb, Se, ZnPhytoextraction[7][8]
CrA-Vallisneria americanaTape GrassCd(H), Pb(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade.[1]
Cr1000Dicoma niccolifera35 records of plants[3]
Crroots naturally absorb pollutants, some organic compounds believed to be carcinogenic,[21] in concentrations 10,000 times that in the surrounding water.[22]Eichhornia crassipesWater HyacinthCd(H), Cu(A), Hg(H),[21] Pb(H),[21] Zn(A). Also Cs, Sr, U,[21][23] and pesticides.[24]Pantropical/Subtropical. Plants sprayed with 2,4-D may accumulate lethal doses of nitrates.[25] 'The troublesome weed' – hence an excellent source of bioenergy.[21][1]
CrHelianthus annuusSunflowerPhytoextraction et rhizofiltration[1][8]
CrA-Hydrilla verticillataHydrillaCd(H), Hg(H), Pb(H)[1]
CrMedicago sativaAlfalfa[3][26]
CrPistia stratiotesWater lettuceCd(T), Hg(H), Cr(H), Cu(T)[1][3][27]
CrSalix spp.Osier spp.Ag, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalix);[9] Potassium ferrocyanide (S. babylonica L.)[10]Phytoextraction. Perchlorate (wetland halophytes)[8]
CrSalvinia molestaKariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)[1][3][28]
CrSpirodela polyrhizaGiant DuckweedCd(H), Ni(H), Pb(H), Zn(A)Native to North America.[1][3][28]
Cr100Jamesbrittenia fodina (Wild) Hilliard
(a.k.a. Sutera fodina Wild)
[3][29][30]
CrA-Thlaspi caerulescensAlpine Pennycress, Alpine PennygrassCd(H), Co(H), Cu(H), Mo, Ni(H), Pb(H), Zn(H)Phytoextraction. T. caerulescens may acidify its rhizosphere, which would affect metal uptake by increasing available metals[31][1][3][8][32][33][34]
Cu9000Aeolanthus biformifolius[35]
CuAthyrium yokoscense(Japanese false spleenwort?)Cd(A), Pb(H), Zn(H)Origin Japan.[1]
CuA-Azolla filiculoidesPacific mosquitofernNi(A), Pb(A), Mn(A)Origin Africa. Floating plant.[1]
CuH-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Hg(A), Pb(A)Origin India. Aquatic emergent species.[1][19]
CuBrassica juncea L.Indian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)cultivated[1][8][20]
CuH-Vallisneria americanaTape GrassCd(H), Cr(A), Pb(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade.[1]
CuEichhornia crassipesWater HyacinthCd(H), Cr(A), Hg(H), Pb(H), Zn(A), Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]
Cu1000Haumaniastrum robertii
(Lamiaceae)
Copper flower27 records of plants. Origin Africa. This species' phanerogam has the highest cobalt content. Its distribution could be governed by cobalt rather than copper.[36][3][33]
CuHelianthus annuusSunflowerPhytoextraction with rhizofiltration[1][33]
Cu1000Larrea tridentataCreosote Bush67 records of plants. Origin U.S.[3][33]
CuH-Lemna minorDuckweedPb(H), Cd(H), Zn(A)Native to North America and widespread worldwide.[1]
CuOcimum centraliafricanumCopper plantCu(T), Ni(T)Origin Southern Africa[37]
CuT-Pistia stratiotesWater LettuceCd(T), Hg(H), Cr(H)Pantropical. Origin South U.S.A. Aquatic herb.[1]
CuThlaspi caerulescensAlpine pennycress, Alpine Pennycress, Alpine PennygrassCd(H), Cr(A), Co(H), Mo, Ni(H), Pb(H), Zn(H)Phytoextraction. Cu noticeably limits its growth.[34][1][3][8][31][32][33][34]
MnA-Agrostis castellanaHighland Bent GrassAl(A), As(A), Pb(A), Zn(A)Origin Portugal.[1]
MnAzolla filiculoidesPacific mosquitofernCu(A), Ni(A), Pb(A)Origin Africa. Floating plant.[1]
MnBrassica juncea L.Indian mustard[8][20]
Mn23,000 (maximum) 11,000 (average) leafChengiopanax sciadophylloides (Franch. & Sav.) C.B.Shang & J.Y.HuangkoshiaburaOrigin Japan. Forest tree.[38]
MnHelianthus annuusSunflowerPhytoextraction et rhizofiltration[8]
Mn1000Macadamia neurophylla
(now Virotia neurophylla (Guillaumin) P. H. Weston & A. R. Mast)
28 records of plants[3][39]
Mn200[3]
HgA-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Cu(H), Hg(A), Pb(A)Origin India. Aquatic emergent species.[1][19]
HgBrassica napusRapeseed plantAg, Cr, Pb, Se, ZnPhytoextraction[7][8]
HgEichhornia crassipesWater HyacinthCd(H), Cr(A), Cu(A), Pb(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]
HgH-Hydrilla verticillataHydrillaCd(H), Cr(A), Pb(H)[1]
Hg1000Pistia stratiotesWater lettuceCd(T), Cr(H), Cu(T)35 records of plants[1][3][33][40]
HgSalix spp.Osier spp.Ag, Cr, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalix);[9] Potassium ferrocyanide (S. babylonica L.)[10]Phytoextraction. Perchlorate (wetland halophytes)[8]
Mo1500Thlaspi caerulescens (Brassicaceae)Alpine pennycressCd(H), Cr(A), Co(H), Cu(H), Ni(H), Pb(H), Zn(H)phytoextraction[1][3][8][31][32][33][34]
NaphthaleneFestuca arundinaceaTall FescueIncreases catabolic genes and the mineralization of naphthalene.[41]
NaphthaleneTrifolium hirtumPink clover, rose cloverDecreases catabolic genes and the mineralization of naphthalene.[41]
PbA-Agrostis castellana'Highland Bent GrassAl(A), As(H), Mn(A), Zn(A)Origin Portugal.[1]
PbAmbrosia artemisiifoliaRagweed[7]
PbArmeria maritimaSeapink Thrift[7]
PbAthyrium yokoscense(Japanese false spleenwort?)Cd(A), Cu(H), Zn(H)Origin Japan.[1]
PbA-Azolla filiculoidesPacific mosquitofernCu(A), Ni(A), Mn(A)Origin Africa. Floating plant.[1]
PbA-Bacopa monnieriSmooth Water Hyssop, Water hyssop, Brahmi, Thyme-leafed gratiolaCd(H), Cr(H), Cu(H), Hg(A)Origin India. Aquatic emergent species.[1][19]
PbH-Brassica junceaIndian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A), Zn(H)79 recorded plants. Phytoextraction[1][3][7][8][20][31][33][34][42]
PbBrassica napusRapeseed plantAg, Cr, Hg, Se, ZnPhytoextraction[7][8]
PbBrassica oleraceaOrnemental Kale et Cabbage, Broccoli[7]
PbH-Vallisneria americanaTape GrassCd(H), Cr(A), Cu(H)Native to Europe and North Africa. Widely cultivated in the aquarium trade.[1]
PbEichhornia crassipesWater HyacinthCd(H), Cr(A), Cu(A), Hg(H), Zn(A). Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]
PbFestuca ovinaBlue Sheep Fescue[7]
PbImopoea trifidaMorning gloryPhytoextraction et rhizofiltration[1][7][8][9][42]
PbH-Hydrilla verticillataHydrillaCd(H), Cr(A), Hg(H)[1]
PbH-Lemna minorDuckweedCd(H), Cu(H), Zn(H)Native to North America and widespread worldwide.[1]
PbSalix viminalisCommon OsierCd, U, Zn,[9] Ag, Cr, Hg, Se, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products (S. spp.);[8] Potassium ferrocyanide (S. babylonica L.)[10]Phytoextraction. Perchlorate (wetland halophytes)[9]
PbH-Salvinia molestaKariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)Origin India.[1]
PbSpirodela polyrhizaGiant DuckweedCd(H), Cr(H), Ni(H), Zn(A)Native to North America.[1][3][28]
PbThlaspi caerulescens (Brassicaceae)Alpine pennycress, Alpine pennygrassCd(H), Cr(A), Co(H), Cu(H), Mo(H), Ni(H), Zn(H)Phytoextraction.[1][3][8][31][32][33][34]
PbThlaspi rotundifoliumRound-leaved Pennycress[7]
PbTriticum aestivumCommon Wheat[7]
Se.012-20Amanita muscariaFly agaricCap contains higher concentrations than stalks[43]
SeBrassica junceaIndian mustardRhizosphere bacteria enhance accumulation.[44][8]
SeBrassica napusRapeseed plantAg, Cr, Hg, Pb, ZnPhytoextraction.[7][8]
SeLow rates of selenium volatilization from selenate-supplied Muskgrass (10-fold less than from selenite) may be due to a major rate limitation in the reduction of selenate to organic forms of selenium in Muskgrass.Chara canescens Desv. & LoisMuskgrassMuskgrass treated with selenite contains 91% of the total Se in organic forms (selenoethers and diselenides), compared with 47% in Muskgrass treated with selenate.[45] 1.9% of the total Se input is accumulated in its tissues; 0.5% is removed via biological volatilization.[46][47]
SeBassia scoparia
(a.k.a. Kochia scoparia)
burningbush, ragweed, summer cypress, fireball, belvedere and Mexican firebrush, Mexican fireweedU,[9] Cr, Pb, Hg, Ag, ZnPerchlorate (wetland halophytes). Phytoextraction.[1][8]
SeSalix spp.Osier spp.Ag, Cr, Hg, petroleum hydrocarbures, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U, Zn (S. viminalis);[9] Potassium ferrocyanide (S. babylonica L.)[10]Phytoextraction. Perchlorate (wetland halophytes).[8]
ZnA-Agrostis castellanaHighland Bent GrassAl(A), As(H), Mn(A), Pb(A)Origin Portugal.[1]
ZnAthyrium yokoscense(Japanese false spleenwort?)Cd(A), Cu(H), Pb(H)Origin Japan.[1]
ZnBrassicaceaeMustards, mustard flowers, crucifers or cabbage familyCd(H), Cs(H), Ni(H), Sr(H)Phytoextraction[8]
ZnBrassica juncea L.Indian mustardCd(A), Cr(A), Cu(H), Ni(H), Pb(H), Pb(P), U(A).Larvae of Pieris brassicae do not even sample its high-Zn leaves. (Pollard and Baker, 1997)[1][8][20]
ZnBrassica napusRapeseed plantAg, Cr, Hg, Pb, SePhytoextraction[7][8]
ZnHelianthus annuusSunflowerPhytoextraction et rhizofiltration[8][9]
ZnEichhornia crassipesWater HyacinthCd(H), Cr(A), Cu(A), Hg(H), Pb(H). Also Cs, Sr, U,[23] and pesticides.[24]Pantropical/Subtropical, 'the troublesome weed'.[1]
ZnSalix viminalisCommon OsierAg, Cr, Hg, Se, petroleum hydrocarbons, organic solvents, MTBE, TCE and by-products;[8] Cd, Pb, U (S. viminalis);[9] Potassium ferrocyanide (S. babylonica L.)[10]Phytoextraction. Perchlorate (wetland halophytes).[9]
ZnA-Salvinia molestaKariba weeds or water fernsCr(H), Ni(H), Pb(H), Zn(A)Origin India.[1]
Zn1400Silene vulgaris (Moench) Garcke (Caryophyllaceae)Bladder campionErnst et al. (1990)
ZnSpirodela polyrhizaGiant DuckweedCd(H), Cr(H), Ni(H), Pb(H)Native to North America.[1][3][28]
ZnH-10,000Thlaspi caerulescens (Brassicaceae)Alpine pennycressCd(H), Cr(A), Co(H), Cu(H), Mo, Ni(H), Pb(H)48 records of plants. May acidify its own rhizosphere, which would facilitate absorption by solubilization of the metal[31][1][3][8][32][33][34][42]
ZnTrifolium pratenseRed CloverNonmetal accumulator.Its rhizosphere is denser in bacteria than that of Thlaspi caerulescens, but T. caerulescens has relatively more metal-resistant bacteria.[31]

Cs-137 activity was much smaller in leaves of larch and sycamore maple than of spruce: spruce > larch > sycamore maple.

References

  1. McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons, page 898.
  2. Grauer & Horst 1990
  3. McCutcheon & Schnoor 2003, Phytoremediation. New Jersey, John Wiley & Sons pg 891.
  4. Toshihiro Watanabe; Mitsuru Osaki; Teruhiko Yoshihara; Toshiaki Tadano (April 1998). "Distribution and chemical speciation of aluminum in the Al accumulator plant, Melastoma malabathricum L.". Plant and Soil. 201 (2): 165–173. doi:10.1023/A:1004341415878.
  5. Warm Climate Production Guidelines for Japanese Hydrangeas. Archived 2009-02-16 at the Wayback Machine By Rick Shoellhorn and Alexis A. Richardson. Environmental Horticulture Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Original publication date February 5, 2005.
  6. Guidi Nissim W.; Pitre F.E.; Kadri H.; Desjardins D.; Labrecque M. (2014). "Early Response Of Willow To Increasing Silver Concentration Exposure". International Journal of Phytoremediation. 16 (4): 660–670. doi:10.1080/15226514.2013.856840. PMID 24933876.
  7. A Resource Guide: The Phytoremediation of Lead to Urban, Residential Soils. Site adapted from a report from Northwestern University written by Joseph L. Fiegl, Bryan P. McDonnell, Jill A. Kostel, Mary E. Finster, and Dr. Kimberly Gray. Archived from the original on February 24, 2011.
  8. Phytoremediation. By McCutcheon & Schnoor. 2003, New Jersey, John Wiley & Sons pg 19.
  9. Ulrich Schmidt (2003). "Enhancing Phytoextraction: The Effect of Chemical Soil Manipulation on Mobility, Plant Accumulation, and Leaching of Heavy Metals". J. Environ. Qual. 32 (6): 1939–54. doi:10.2134/jeq2003.1939. PMID 14674516. Archived from the original on 2007-02-25.
  10. Yu XZ, Zhou PH, Yang YM (July 2006). "The potential for phytoremediation of iron cyanide complex by willows". Ecotoxicology. 15 (5): 461–7. doi:10.1007/s10646-006-0081-5. PMID 16703454.
  11. Borovička J.; Řanda Z.; Jelínek E.; Kotrba P.; Dunn C.E. (2007). "Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella". Mycological Research. 111 (Pt 11): 1339–44. doi:10.1016/j.mycres.2007.08.015. PMID 18023163.
  12. R.G. Haverkamp and A.T. Marshall and D. van Agterveld (2007). "Pick your Carats: Nanoparticles of Gold-Silver-Copper Alloy Produced In Vivo". J. Nanoparticle Res. 9 (4): 697–700. Bibcode:2007JNR.....9..697H. doi:10.1007/s11051-006-9198-y.
  13. Porter and Peterson 1975
  14. Braeuer S.; Goessler W.; Kameník J.; Konvalinková T.; Žigová A.; Borovička J. (2018). "Arsenic hyperaccumulation and speciation in the edible ink stain bolete (Cyanoboletus pulverulentus)". Food Chemistry. 242: 225–231. doi:10.1016/j.foodchem.2017.09.038. PMC 6118325. PMID 29037683.
  15. Junru Wang; Fang-Jie Zhao; Andrew A. Meharg; Andrea Raab; Joerg Feldmann; Steve P. McGrath (November 2002). "Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciation". Plant Physiol. 130 (3): 1552–61. doi:10.1104/pp.008185. PMC 166674. PMID 12428020. 18 days' hydroponic experiment with varying concentrations of arsenate and P. Within 8 h, 50% to 78% of the As taken up is distributed to the fronds, which take from 1.3 to 6.7 times more As than the roots do. No P for 8 days increases the arsenate's maximum net influx by 2.5-fold; the plants then absorbs 10 times more arsenate than arsenite. If on the other hand the P supply is increased, As uptake decreases - with a greater effect on the roots than on the shoots. More arsenate decreases the P concentration in the roots, but not in the fronds. P in the uptake solution markedly decreases arsenate uptake. The presence or absence of P does not affect the uptake of arsenite, which translocates more easily than arsenate.
  16. C. Tu, L.Q. Ma & B. Bondada (2002). "Arsenic Accumulation in the Hyperaccumulator Chinese Brake and Its Utilization Potential for Phytoremediation". Journal of Environmental Quality. 31 (5): 1671–5. doi:10.2134/jeq2002.1671. PMID 12371185. Archived from the original on 2006-09-27. Retrieved 2006-09-19.
  17. Gui-Lan Duan; Y.-G. Zhu; Y.-P. Tong; C. Cai; R. Kneer (2005). "Characterization of Arsenate Reductase in the Extract of Roots and Fronds of Chinese Brake Fern, an Arsenic Hyperaccumulator". Plant Physiology. 138 (1): 461–9. doi:10.1104/pp.104.057422. PMC 1104199. PMID 15834011. Yeast (Saccharomyces c.) has an arsenate reductase, Acr2p, that uses glutathione as the electron donor. Pteris vittata has an arsenate reductase with the same reaction mechanism, and the same substrate specificity and sensitivity toward inhibitors (P as a competitive inhibitor, arsenite as a noncompetitive inhibitor).
  18. Priel 1995.
  19. Gurta et al. 1994
  20. L.E. Bennetta; J.L. Burkheada; K.L. Halea; N. Terry; M. Pilona; E.A. H. Pilon-Smits (2003). "Analysis of Transgenic Indian Mustard Plants for Phytoremediation of Metal-Contaminated Mine Tailings". Journal of Environmental Quality. 32 (2): 432. doi:10.2134/jeq2003.0432. Archived from the original on 2007-03-10.
  21. Handbook of Energy Crops. By J. Duke. Available only online. An excellent source of information on numerous plants.
  22. "Biology Briefs". BioScience. 26 (3): 223–224. 1976. doi:10.2307/1297259. JSTOR 1297259.
  23. Phytoremediation of radionuclides. Archived 2012-01-11 at the Wayback Machine
  24. J.K. Lan (March 2004). "Recent developments of phytoremediation". J. Geol. Hazards Environ. Preserv. 15 (1): 46–51. Archived from the original on 2011-05-20.
  25. Tropical feeds. Feed information summaries and nutritive values. By B. Gohl. 1981. FAO Animal Production and Health Series 12. FAO, Rome. Cited in Handbook of Energy Crops. By J. Duke.
  26. Tiemmann et al. 1994
  27. Sen et al. 1987
  28. Srivastav 1994
  29. Wild 1974
  30. Brooks & Yang 1984
  31. T.A. Delorme; J.V. Gagliardi; J.S. Angle; R.L. Chaney (2001). "Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations". Can. J. Microbiol. 47 (8): 773–6. doi:10.1139/cjm-47-8-773. PMID 11575505. Archived from the original on 2007-03-11.
  32. Majeti Narasimha Vara Prasad (Jan–Mar 2005). "Nickelophilous plants and their significance in phytotechnologies". Braz. J. Plant Physiol. 17 (1): 113–128. doi:10.1590/s1677-04202005000100010.
  33. Baker & Brooks, 1989
  34. E. Lombi, F.J. Zhao, S.J. Dunham et S.P. McGrath (2001). "Phytoremediation of Heavy Metal, Contaminated Soils, Natural Hyperaccumulation versus Chemically Enhanced Phytoextraction". Journal of Environmental Quality. 30 (6): 1919–26. doi:10.2134/jeq2001.1919. PMID 11789997. Archived from the original on 2007-03-01. Retrieved 2006-09-19.CS1 maint: multiple names: authors list (link)
  35. R.S. Morrison; R.R. Brooks; R.D. Reeves; F. Malaisse (December 1979). "Copper and cobalt uptake by metallophytes from Zaïre". Plant and Soil. 53 (4): 535–539. doi:10.1007/bf02140724.
  36. R. R. Brooks (1977). "Copper and cobalt uptake by Haumaniustrum species". Plant and Soil. 48 (2): 541–544. doi:10.1007/BF02187261.
  37. Howard-Williams, C. (1970). "The ecology of Becium homblei in Central Africa with special reference to metalliferous soils". Journal of Ecology. 58 (3): 745–763. doi:10.2307/2258533. JSTOR 2258533.
  38. Mizuno, Takafumi; Emori, Kanae; Ito, Shin-ichiro (2013). "Manganese hyperaccumulation from non-contaminated soil in Chengiopanax sciadophylloides Franch. et Sav. and its correlation with calcium accumulation". Soil Science and Plant Nutrition. 59 (4): 591–602. doi:10.1080/00380768.2013.807213.
  39. Baker & Walker 1990
  40. Atri 1983
  41. S.D. Siciliano; J.J. Germida; K. Banks; C. W. Greer (January 2003). "Changes in Microbial Community Composition and Function during a Polyaromatic Hydrocarbon Phytoremediation Field Trial". Applied and Environmental Microbiology. 69 (1): 483–9. doi:10.1128/AEM.69.1.483-489.2003. PMC 152433. PMID 12514031.
  42. Phytoremediation Decision Tree, ITRC
  43. T. Stijve (September 1977). "Selenium content of mushrooms". Zeitschrift für Lebensmittel-Untersuchung und -Forschung A. 164 (3): 201–3. doi:10.1007/BF01263031. PMID 562040.
  44. Mark P. de Souza; Dara Chu; May Zhao; Adel M. Zayed; Steven E. Ruzin; Denise Schichnes & Norman Terry (1999). "Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian mustard". Plant Physiol. 119 (2): 565–574. doi:10.1104/pp.119.2.565. PMC 32133. PMID 9952452.
  45. X-ray absorption spectroscopy speciation analysis.
  46. Average Se concentration of 22 µg L-1 supplied over a 24-d experimental period.
  47. Z.-Q. Lin; M.P. de Souza; I. J. Pickering; N. Terry (2002). "Evaluation of the Macroalga, Muskgrass, for the Phytoremediation of Selenium-Contaminated Agricultural Drainage Water by Microcosms". Journal of Environmental Quality. 31 (6): 2104–10. doi:10.2134/jeq2002.2104. PMID 12469862. Archived from the original on 2007-05-26. Retrieved 2006-11-02.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.