List of nonlinear partial differential equations
See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential equations.
A–F
G–K
Name Dim Equation Applications G equation 1+3 turbulent combustion Generic scalar transport 1+3 transport Ginzburg–Landau 1+3 Superconductivity Gross–Pitaevskii 1 + n Bose–Einstein condensate Gyrokinetics equation 1 + 5 Microturbulence in plasma Guzmán 1 + n Hamilton–Jacobi–Bellman equation for risk aversion Hartree equation Any Hasegawa–Mima 1+3 Turbulence in plasma Heisenberg ferromagnet 1+1 Magnetism Hicks 1+1 Fluid dynamics Hunter–Saxton 1+1 Liquid crystals Ishimori equation 1+2 Integrable systems Kadomtsev –Petviashvili 1+2 Shallow water waves Kardar–Parisi–Zhang equation 1+3 Stochastics von Karman 2 Kaup 1+1 Kaup–Kupershmidt 1+1 Integrable systems Klein–Gordon–Maxwell any Klein–Gordon (nonlinear) any Relativistic quantum mechanics Khokhlov–Zabolotskaya 1+2 Korteweg–de Vries (KdV) 1+1 Shallow waves, Integrable systems KdV (super) 1+1 There are more minor variations listed in the article on KdV equations. Kuramoto–Sivashinsky equation 1 + n Combustion
L–Q
Name Dim Equation Applications Landau–Lifshitz model 1+n Magnetic field in solids Lin–Tsien equation 1+2 Liouville equation any Liouville–Bratu–Gelfand equation any combustion, astrophysics Logarithmic Schrödinger equation any Superfluids, Quantum gravity Minimal surface 3 minimal surfaces Monge–Ampère any lower order terms Navier–Stokes
(and its derivation)1+3
+ mass conservation:
+ an equation of state to relate p and ρ, e.g. for an incompressible flow:Fluid flow, gas flow Nonlinear Schrödinger (cubic) 1+1 optics, water waves Nonlinear Schrödinger (derivative) 1+1 optics, water waves Omega equation 1+3 atmospheric physics Plateau 2 Pohlmeyer–Lund–Regge 2 Porous medium 1+n diffusion Prandtl 1+2 , boundary layer
R–Z, α–ω
References
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.