List of sequenced algae genomes

This list of sequenced algae genomes contains algae species known to have publicly available complete genome sequences that have been assembled, annotated and published. Unassembled genomes are not included, nor are organelle-only sequences. For plant genomes see the list of sequenced plant genomes. For plastid sequences, see the list of sequenced plastomes. For all kingdoms, see the list of sequenced genomes.

Dinoflagellates (Alveolata)

See also List of sequenced protist genomes.

Organism

strain

Type Relevance Genome size Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Breviolum minutum (Symbiodinium minutum; clade B1) Dinoflagellate Coral symbiont 1.5 Gb 47,014 Okinawa Institute of Science and Technology 2013[1] Draft OIST Marine Genomics[2]
Cladocopium goreaui (Symbiodinium goreaui; clade C, type C1) Dinoflagellate Coral symbiont 1.19 Gb 35,913 Reef Future Genomics (ReFuGe) 2020 / University of Queensland 2018[3] Draft ReFuGe 2020[4]
Cladocopium C92 strain Y103 (Symbiodinium sp. clade C; putative type C92) Dinoflagellate Foraminiferan symbiont Unknown (assembly size 0.70 Gb) 65,832 Okinawa Institute of Science and Technology 2018[5] Draft OIST Marine Genomics[2]
Fugacium kawagutii CS156=CCMP2468 (Symbiodinium kawagutii; clade F1) Dinoflagellate Coral symbiont? 1.07 Gb 26,609 Reef Future Genomics (ReFuGe) 2020 / University of Queensland 2018[3] Draft ReFuGe 2020[4]
Fugacium kawagutii CCMP2468 (Symbiodinium kawagutii; clade F1) Dinoflagellate Coral symbiont? 1.18 Gb 36,850 University of Connecticut / Xiamen University 2015[6] Draft S. kawagutii genome project[7]
Polarella glacialis CCMP1383 Dinoflagellate Psychrophile, Antarctic 3.02 Gb (diploid), 1.48 Gbp (haploid) 58,232 University of Queensland 2020[8] Draft UQ eSpace[9]
Polarella glacialis CCMP2088 Dinoflagellate Psychrophile, Arctic 2.65 Gb (diploid), 1.30 Gbp (haploid) 51,713 University of Queensland 2020[8] Draft UQ eSpace[9]
Symbiodinium microadriaticum (clade A) Dinoflagellate Coral symbiont 1.1 Gb 49,109 King Abdullah University of Science and Technology 2016[10] Draft Reef Genomics[11]
Symbiodinium A3 strain Y106 (Symbiodinium sp. clade A3) Dinoflagellate symbiont Unknown (assembly size 0.77 Gb) 69,018 Okinawa Institute of Science and Technology 2018[5] Draft OIST Marine Genomics[2]

Cryptomonad

Organism

strain

Type Relevance Genome size Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Cryptophyceae sp. CCMP2293 Nanoflagellate Nucleomorph, Psychrophile 534.5 Mb 33,051 Joint Genome Institute 2016[12] JGI Genome Portal[13]
Guillardia theta Eukaryote Endosymbiosis 87.2 Mb 24, 840 Dalhousie University 2012[14] The Greenhouse[15]

Glaucophyte

Organism

strain

Type Relevance Genome

size

Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Cyanophora

paradoxa

Model

Organism

70.2 Mb 3,900 Rutgers University 2012[16] Draft v1 The Greenhouse[15]

Cyanophora Genome Project[17]

Cyanophora

paradoxa

Model

Organism

99.94 Mb 25,831 Rutgers University 2019[18] Draft v2 Cyanophora Genome Project[19]

Green algae

Organism

strain

Type Relevance Genome

size

Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Asterochloris sp. Cgr/DA1pho Photobiont 55.8 Mb 10,025 Duke University 2011[20] JGI Genome Portal[13]
Auxenochlorella protothecoides Biofuels 22.9 Mb 7,039 Tsinghua University 2014[21] The Greenhouse[15]
Bathycoccus prasinos Comparative analysis 15.1 Mb 7,900 Joint Genome Institute 2012[22] JGI Genome Portal[13]
Chlamydomonas reinhardtii CC-503

cw92 mt+

Model Organism 111.1 Mb 17,741 Joint Genome Institute 2017[23] Phytozome[24]

The Greenhouse[15]

Chlorella sorokiniana str. 1228 Biofuels 61.4 Mb Los Alamos National Lab 2018[25] The Greenhouse[15]
Chlorella sorokiniana UTEX 1230 Biofuels 58.5 Mb Los Alamos National Lab 2018[26] The Greenhouse[15]
Chlorella sorokiniana DOE1412 Biofuels 57.8 Mb Los Alamos National Lab 2018[27] The Greenhouse[15]
Chlorella variabilis NC64A Biofuels 46.2 Mb 9,791 2010[28] The Greenhouse[15]
Chlorella vulgaris Biofuels 37.3 Mb National Renewable

Energy Laboratory

2015[29] The Greenhouse[15]
Coccomyxa subellipsoidea

sp. C-169

Biofuels 48.8 Mb 9839 Joint Genome Institute 2012[30] Phytozome[24]

The Greenhouse[15]

Dunaliella salina

CCAP19/18

Halophile

Biofuels

Beta-carotene and glycerol production

343.7 Mb 16,697 Joint Genome Institute 2017[31] Phytozome[24]
Eudorina sp. Multicellular alga,

model organism

~180 Mb University of Tokyo 2018[32]
Micromonas commoda NOUM17 (RCC288) Marine phytoplankton 21.0 Mb 10,262 Monterey Bay Aquarium Research Institute 2013[33][34] JGI Genome Portal[13]
Micromonas

pusilla CCMP-1545

Marine

phytoplankton

21.9 Mb 10,575 Micromonas

Genome

Consortium

2009[35] Phytozome[24]

The Greenhouse[15]

Micromonas

pusilla

RCC299/NOUM17

Marine

phytoplankton

20.9 Mb 10,056 Joint Genome

Institute

2009[35] Phytozome[24]

The

Greenhouse[15]

Monoraphidium

neglectum

Biofuels 69.7 Mb 16,755 Bielefeld

University

2013[36] The

Greenhouse[15]

Ostreococcus

lucimarinus

CCE9901

Small genome 13.2 Mb 7,603 Joint Genome Institute 2007[37] Phytozome[24]
Ostreococcus

tauri OTH95

Small genome 12.9 Mb 7,699 CNRS 2014[38] The Greenhouse[15]
Ostreococcus sp.

RCC809

Small genome 13.3 Mb 7,492 Joint Genome

Institute

2009[39] JGI[40]
Picochlorum

soloecismus

DOE101

Biofuels 15.2 Mb 7,844 Los Alamos

National Lab

2017[41] The Greenhouse[15]
Picochlorum

SENEW3

Biofuels 13.5 Mb 7,367 Rutgers University 2014[42] The Greenhouse[15]
Scenedesmus

obliquus DOE0152Z

Biofuels 210.3 Mb Brooklyn College 2017[43] The Greenhouse[15]
Symbiochloris reticulata (Metagenome) Photobiont 58.6 Mb 12,720 Joint Genome Institute 2018[44] JGI Genome Portal[13]
Tetraselmis sp. Biofuels 228 Mb Los Alamos

National Lab

2018[15] The Greenhouse[15]
Volvox carteri Multicellular alga,

model organism

131.2 Mb 14,247 Joint Genome

Institute

2010[45] Phytozome[24]

The

Greenhouse[15]

Yamagishiella unicocca Multicellular alga,

model organism

~140 Mb University of Tokyo 2018[32]

Haptophyte

Organism

strain

Type Relevance Genome

size

Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Chrysochromulina

parva

Biofuels 65.8 Mb Los Alamos National Laboratory 2018[46] The Greenhouse[15]
Chrysochromulina tobinii CCMP291 Model organism, Biofuels 59.1 Mb 16,765 University of Washington 2015[47] The Greenhouse[15]
Emiliania huxleyi Coccolithophore Alkenone production, Algal blooms 167.7 Mb 38,554 Joint Genome Institute 2013[48] The Greenhouse[15]
Pavlovales sp. CCMP2436 Psychrophile 165.4 Mb 26,034 Joint Genome Institute 2016[49] JGI Genome Portal[13]

Heterokonts/Stramenopiles

Organism

strain

Type Relevance Genome

size

Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Aureococcus

anophagefferens

Harmful Algal

Bloom

50.1 Mb 11,522 Joint Genome Institute 2011[50] The Greenhouse[15]
Ectocarpus siliculosus Brown algae Model organism 198.5 Mb 16,269 Genoscope 2012[51] The Greenhouse[15]
Fragilariopsis cylindrus CCMP1102 Psychrophile 61.1 Mb 21,066 University of East Anglia, Joint Genome Institute 2017[52] JGI Genome Portal[13]
Nannochloropsis

gaditana

Biofuels 28.5 Mb 10,486 University of Padua 2014[53] The Greenhouse[15]
Nannochloropsis

oceanica

Biofuels 31.5 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology 2016[54] The Greenhouse[15]
Nannochloropsis Salina CCMP1766 Biofuels 24.4 Mb Chinese Academy of Sciences, Qingdao Institute of Bioenergy and Bioprocess Technology 2016[55] The Greenhouse[15]
Ochromonadaceae sp. CCMP2298 Psychrophile 61.1 Mb 20,195 Joint Genome Institute 2016[56] JGI Genome Portal[13]
Pelagophyceae sp. CCMP2097 Psychrophile 85.2 Mb 19,402 Joint Genome Institute 2016[57] JGI Genome Portal[13]
Phaeodactylum tricornutum Model organism 27.5 Mb 10,408 Diatom Consortium 2008[58] The Greenhouse[15]
Pseudo-nitzschia multiseries CLN-47 218.7 Mb 19,703 Joint Genome Institute 2011[59] JGI Genome Portal[13]
Saccharina japonica Brown algae Commercial crop 543.4 Mb Chinese Academy of Sciences, Beijing Institutes of Life Science 2015[60] The Greenhouse[15]
Thalassiosira oceanica CCMP 1005 Model organism 92.2 Mb 34,642 The Future Ocean 2012[61] The Greenhouse[15]
Thalassiosira pseudonana model organism 32.4 Mb 11,673 Diatom Consortium 2009[62] The Greenhouse[15]

Red algae (Rhodophyte)

Organism

strain

Type Relevance Genome

size

Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Chondrus crispus Carrageenan production, model organism 105 Mb 9,606 Genoscope 2013 The Greenhouse[15]
Cyanidioschyzon

merolae 10D

Model

organism

16.5 Mb 4,775 National Institute

of Genetics, Japan

2007[63] The Greenhouse[15]
Galdieria sulphuraria Extremophile 12.1 Mb The University of York 2016[64] The Greenhouse[15]
Gracilariopsis chorda Mesophile 92.1 Mb 10,806 Sungkyunkwan University 2018[65]
Porphyridium purpureum Mesophile 19.7 Mb 8,355 Rutgers University 2013[66]
Porphyra umbilicalis Mariculture 87.6 Mb 13,360 University of Maine 2017[67] Phytozome[24]
Pyropia yezoensis Mariculture 43.5 Mb 10,327 National Research Institute of Fisheries Science 2013[68]

Rhizaria

Organism

strain

Type Relevance Genome

size

Number

of genes

predicted

Organization Year of

completion

Assembly

status

Links
Bigelowiella natans Model organism 94. Mb 21,708 Dalhousie University 2012[14] The Greenhouse[15]

References

  1. Shoguchi E, Shinzato C, Kawashima T, Gyoja F, Mungpakdee S, Koyanagi R, et al. (2013). "Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure". Current Biology. 25 (15): 1399–1408. doi:10.1016/j.cub.2013.05.062. PMID 23850284.
  2. "OIST Marine Genomics". marinegenomics.oist.jp. Retrieved 2018-08-22.
  3. Liu H, Stephens TG, González-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. (2018). "Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis". Communications Biology. 1: 95. doi:10.1038/s42003-018-0098-3. PMC 6123633. PMID 30271976.
  4. "ReFuGe 2020 Data Site". refuge2020.reefgenomics.org. Retrieved 2018-08-22.
  5. Shoguchi E, Beedessee G, Tada I, Hisata K, Kawashima T, Takeuchi T, et al. (2018). "Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes". BMC Genomics. 19 (1): 458. doi:10.1186/s12864-018-4857-9. PMC 6001144. PMID 29898658.
  6. Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, et al. (2015). "The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis". Science. 350 (6261): 691–4. Bibcode:2015Sci...350..691L. doi:10.1126/science.aad0408. PMID 26542574.
  7. "S. kawagutii data site". web.malab.cn/symka_new. Retrieved 2018-08-22.
  8. Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. (2020). "Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions". BMC Biology. 18 (1): 56. doi:10.1186/s12915-020-00782-8. PMC 7245778. PMID 32448240.
  9. Stephens, Timothy; Ragan, Mark; Bhattacharya, Debashish; Chan, Cheong Xin (2020). "Polarella data site". doi:10.14264/uql.2020.222. Cite journal requires |journal= (help)
  10. Aranda M, Li Y, Liew YJ, Baumgarten S, Simakov O, Wilson MC, et al. (2016). "Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle". Scientific Reports. 6: 39734. Bibcode:2016NatSR...639734A. doi:10.1038/srep39734. PMC 5177918. PMID 28004835.
  11. "Reef Genomics Data Site". smic.reefgenomics.org. Retrieved 2018-08-22.
  12. "Info - Cryptophyceae sp. CCMP2293 v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  13. "Algae". genome.jgi.doe.gov. Retrieved 2018-07-31.
  14. Curtis BA, Tanifuji G, Burki F, Gruber A, Irimia M, Maruyama S, et al. (December 2012). "Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs". Nature. 492 (7427): 59–65. Bibcode:2012Natur.492...59C. doi:10.1038/nature11681. PMID 23201678.
  15. "Home | Greenhouse". greenhouse.lanl.gov. Retrieved 2018-07-11.
  16. Price DC, Chan CX, Yoon HS, Yang EC, Qiu H, Weber AP, et al. (February 2012). "Cyanophora paradoxa genome elucidates origin of photosynthesis in algae and plants". Science. 335 (6070): 843–7. Bibcode:2012Sci...335..843P. doi:10.1126/science.1213561. PMID 22344442. S2CID 17190180.
  17. "Cyanophora Genome Project". cyanophora.rutgers.edu. Retrieved 2018-07-12.
  18. Price DC, Goodenough UW, Roth R, Lee JH, Kariyawasam T, Mutwil M, et al. (August 2019). "Analysis of an improved Cyanophora paradoxa genome assembly". DNA Research. 26 (4): 289–299. doi:10.1093/dnares/dsz009. PMC 6704402. PMID 31098614.
  19. "Cyanophora Genome v2 Project". cyanophora.rutgers.edu/cyanophora_v2018. Retrieved 2019-08-01.
  20. "Info - Asterochloris sp. Cgr/DA1pho v2.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  21. Gao C, Wang Y, Shen Y, Yan D, He X, Dai J, Wu Q (July 2014). "Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes". BMC Genomics. 15: 582. doi:10.1186/1471-2164-15-582. PMC 4111847. PMID 25012212.
  22. Moreau H, Verhelst B, Couloux A, Derelle E, Rombauts S, Grimsley N, et al. (August 2012). "Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage". Genome Biology. 13 (8): R74. doi:10.1186/gb-2012-13-8-r74. PMC 3491373. PMID 22925495.
  23. "Phytozome". phytozome.jgi.doe.gov. Retrieved 2018-07-12.
  24. "Phytozome". phytozome.jgi.doe.gov. Retrieved 2018-07-12.
  25. "CSI_1228 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  26. "ASM313072v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  27. "ASM311615v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  28. Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, et al. (September 2010). "The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex". The Plant Cell. 22 (9): 2943–55. doi:10.1105/tpc.110.076406. PMC 2965543. PMID 20852019.
  29. "ASM102112v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  30. "Coccomyxa subellipsoidae v2.0 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  31. "Dsal_v1.0 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-13.
  32. Hamaji, Takashi; Kawai-Toyooka, Hiroko; Uchimura, Haruka; Suzuki, Masahiro; Noguchi, Hideki; Minakuchi, Yohei; Toyoda, Atsushi; Fujiyama, Asao; Miyagishima, Shin-ya (2018-03-08). "Anisogamy evolved with a reduced sex-determining region in volvocine green algae". Communications Biology. 1 (1): 17. doi:10.1038/s42003-018-0019-5. ISSN 2399-3642. PMC 6123790. PMID 30271904.
  33. "Info - Micromonas commoda NOUM17 (RCC 299)". genome.jgi.doe.gov. Retrieved 2018-07-31.
  34. Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. (April 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–72. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID 19359590. S2CID 206516961.
  35. Worden AZ, Lee JH, Mock T, Rouzé P, Simmons MP, Aerts AL, et al. (April 2009). "Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas". Science. 324 (5924): 268–72. Bibcode:2009Sci...324..268W. doi:10.1126/science.1167222. PMID 19359590. S2CID 206516961.
  36. Bogen C, Al-Dilaimi A, Albersmeier A, Wichmann J, Grundmann M, Rupp O, et al. (December 2013). "Reconstruction of the lipid metabolism for the microalga Monoraphidium neglectum from its genome sequence reveals characteristics suitable for biofuel production". BMC Genomics. 14: 926. doi:10.1186/1471-2164-14-926. PMC 3890519. PMID 24373495.
  37. Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, et al. (May 2007). "The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation". Proceedings of the National Academy of Sciences of the United States of America. 104 (18): 7705–10. Bibcode:2007PNAS..104.7705P. doi:10.1073/pnas.0611046104. PMC 1863510. PMID 17460045.
  38. Blanc-Mathieu R, Verhelst B, Derelle E, Rombauts S, Bouget FY, Carré I, et al. (December 2014). "An improved genome of the model marine alga Ostreococcus tauri unfolds by assessing Illumina de novo assemblies". BMC Genomics. 15 (1): 1103. doi:10.1186/1471-2164-15-1103. PMC 4378021. PMID 25494611.
  39. "Info - Ostreococcus sp. RCC809". genome.jgi.doe.gov. Retrieved 2018-07-16.
  40. "Home - Ostreococcus sp. RCC809". genome.jgi.doe.gov. Retrieved 2018-07-26.
  41. Gonzalez-Esquer CR, Twary SN, Hovde BT, Starkenburg SR (January 2018). "Picochlorum soloecismus". Genome Announcements. 6 (4): e01498–17. doi:10.1128/genomeA.01498-17. PMC 5786678. PMID 29371352.
  42. Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D (February 2015). "Genome of the halotolerant green alga Picochlorum sp. reveals strategies for thriving under fluctuating environmental conditions". Environmental Microbiology. 17 (2): 412–26. doi:10.1111/1462-2920.12541. PMID 24965277. S2CID 23615707.
  43. Starkenburg SR, Polle JE, Hovde B, Daligault HE, Davenport KW, Huang A, et al. (August 2017). "Scenedesmus obliquus Strain DOE0152z". Genome Announcements. 5 (32). doi:10.1128/genomeA.00617-17. PMC 5552973. PMID 28798164.
  44. "Info - Symbiochloris reticulata Africa extracted metagenome v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  45. Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, et al. (July 2010). "Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri". Science. 329 (5988): 223–6. Bibcode:2010Sci...329..223P. doi:10.1126/science.1188800. PMC 2993248. PMID 20616280.
  46. "ASM288719v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-11.
  47. "Ctobinv2 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
  48. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC, Maumus F, et al. (July 2013). "Pan genome of the phytoplankton Emiliania underpins its global distribution". Nature. 499 (7457): 209–13. Bibcode:2013Natur.499..209.. doi:10.1038/nature12221. PMID 23760476.
  49. "Info - Pavlovales sp. CCMP2436 v1.0". genome.jgi.doe.gov. Retrieved 2018-07-31.
  50. Gobler CJ, Berry DL, Dyhrman ST, Wilhelm SW, Salamov A, Lobanov AV, et al. (March 2011). "Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics". Proceedings of the National Academy of Sciences of the United States of America. 108 (11): 4352–7. Bibcode:2011PNAS..108.4352G. doi:10.1073/pnas.1016106108. PMC 3060233. PMID 21368207.
  51. "ASM31002v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-11.
  52. Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J, et al. (January 2017). "Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus". Nature. 541 (7638): 536–540. Bibcode:2017Natur.541..536M. doi:10.1038/nature20803. hdl:10754/622831. PMID 28092920.
  53. Corteggiani Carpinelli E, Telatin A, Vitulo N, Forcato C, D'Angelo M, Schiavon R, et al. (February 2014). "Chromosome scale genome assembly and transcriptome profiling of Nannochloropsis gaditana in nitrogen depletion". Molecular Plant. 7 (2): 323–35. doi:10.1093/mp/sst120. PMID 23966634.
  54. "ASM187094v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
  55. "ASM161424v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
  56. "Info - Ochromonadaceae sp. CCMP2298 v1.0". genome.jgi.doe.gov. Retrieved 2018-08-02.
  57. "Info - Pelagophyceae sp. CCMP2097 v1.0". genome.jgi.doe.gov. Retrieved 2018-08-02.
  58. "Phaeodactylum tricornutum (ID 418) - Genome - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-26.
  59. "Info - Pseudo-nitzschia multiseries CLN-47". genome.jgi.doe.gov. Retrieved 2018-08-02.
  60. "SJ6.1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
  61. Jiang Z, Liu S, Wu Y, Jiang X, Zhou K (2017). "China's mammal diversity (2nd edition)". Biodiversity Science. 25 (8): 886–895. doi:10.17520/biods.2017098.
  62. "ASM14940v2 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-27.
  63. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, et al. (July 2007). "A 100%-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae". BMC Biology. 5: 28. doi:10.1186/1741-7007-5-28. PMC 1955436. PMID 17623057.
  64. "ASM170485v1 - Genome - Assembly - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-07-30.
  65. Lee J, Yang EC, Graf L, Yang JH, Qiu H, Zelzion U, et al. (2018-04-23). "Analysis of the draft genome of the red seaweed Gracilariopsis chorda provides insights into genome size evolution in Rhodophyta". Molecular Biology and Evolution. 35 (8): 1869–1886. doi:10.1093/molbev/msy081. PMID 29688518.
  66. Bhattacharya D, Price DC, Chan CX, Qiu H, Rose N, Ball S, et al. (2013-06-17). "Genome of the red alga Porphyridium purpureum". Nature Communications. 4 (1): 1941. Bibcode:2013NatCo...4.1941B. doi:10.1038/ncomms2931. PMC 3709513. PMID 23770768.
  67. Brawley SH, Blouin NA, Ficko-Blean E, Wheeler GL, Lohr M, Goodson HV, et al. (August 2017). "Porphyra umbilicalis (Bangiophyceae, Rhodophyta)". Proceedings of the National Academy of Sciences of the United States of America. 114 (31): E6361–E6370. doi:10.1073/pnas.1703088114. PMC 5547612. PMID 28716924.
  68. Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, et al. (2013-03-11). "The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis)". PLOS ONE. 8 (3): e57122. Bibcode:2013PLoSO...857122N. doi:10.1371/journal.pone.0057122. PMC 3594237. PMID 23536760.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.