Local diffeomorphism

In mathematics, more specifically differential topology, a local diffeomorphism is intuitively a map between smooth manifolds that preserves the local differentiable structure. The formal definition of a local diffeomorphism is given below.

Formal definition

Let X and Y be differentiable manifolds. A function

is a local diffeomorphism, if for each point x in X there exists an open set U containing x, such that

is open in Y and

is a diffeomorphism.

A local diffeomorphism is a special case of an immersion f from X to Y, where the image f(U) of U under f locally has the differentiable structure of a submanifold of Y. Then f(U) and X may have a lower dimension than Y.

Discussion

For instance, even though all manifolds look locally the same (as Rn for some n) in the topological sense, it is natural to ask whether their differentiable structures behave in the same manner locally. For example, one can impose two different differentiable structures on R that make R into a differentiable manifold, but both structures are not locally diffeomorphic (see below). Although local diffeomorphisms preserve differentiable structure locally, one must be able to "patch up" these (local) diffeomorphisms to ensure that the domain is the entire (smooth) manifold. For example, there can be no local diffeomorphism from the 2-sphere to Euclidean 2-space although they do indeed have the same local differentiable structure. This is because all local diffeomorphisms are continuous, the continuous image of a compact space is compact, the sphere is compact whereas Euclidean 2-space is not.

Properties

See also

References

  • Michor, Peter W. (2008), Topics in differential geometry, Graduate Studies in Mathematics, 93, Providence, R.I.: American Mathematical Society, ISBN 978-0-8218-2003-2, MR 2428390.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.