Maurer rose

In geometry, the concept of a Maurer rose was introduced by Peter M. Maurer in his article titled A Rose is a Rose.... A Maurer rose consists of some lines that connect some points on a rose curve.


A Maurer rose with n = 7 and d = 29

Definition

Let r = sin(nθ) be a rose in the polar coordinate system, where n is a positive integer. The rose has n petals if n is odd, and 2n petals if n is even.

We then take 361 points on the rose:

(sin(nk), k) (k = 0, d, 2d, 3d, ..., 360d),

where d is a positive integer and the angles are in degrees, not radians.

Explanation

A Maurer rose of the rose r = sin(nθ) consists of the 360 lines successively connecting the above 361 points. Thus a Maurer rose is a polygonal curve with vertices on a rose.

A Maurer rose can be described as a closed route in the polar plane. A walker starts a journey from the origin, (0, 0), and walks along a line to the point (sin(nd), d). Then, in the second leg of the journey, the walker walks along a line to the next point, (sin(n·2d), 2d), and so on. Finally, in the final leg of the journey, the walker walks along a line, from (sin(n·359d), 359d) to the ending point, (sin(n·360d), 360d). The whole route is the Maurer rose of the rose r = sin(nθ). A Maurer rose is a closed curve since the starting point, (0, 0) and the ending point, (sin(n·360d), 360d), coincide.

The following figure shows the evolution of a Maurer rose (n = 2, d = 29°).

Images

The following are some Maurer roses drawn with some values for n and d:

Syntax examples


JavaScript code

// Boilerplate, gotta be somewhere, right?
document.body.innerHTML = ''; // Strips the page of its stuff, in case you just want to paste this into the console in a new tab or really anywhere.
const canv = document.createElement('canvas');
canv.width = 800;
canv.height = 800;
document.body.appendChild(canv);
const ctx = canv.getContext('2d');

// Alright, rose time.
let n = 6, d = 71; // These can be any combination, but this one is nice.

ctx.translate(canv.width / 2, canv.height / 2);

ctx.beginPath();
ctx.lineWidth = 0.5;
ctx.strokeStyle = 'blue';
for (let theta = 0; theta <= 360 /* we're working with degrees, remember? */; theta++){
    let k = theta * d * Math.PI / 180;
    let r = 300 * Math.sin(n * k);
    let x = -r * Math.cos(k);
    let y = -r * Math.sin(k);
    ctx.lineTo(x, y);
    ctx.moveTo(x, y);
}
ctx.stroke();
ctx.beginPath();
ctx.lineWidth = 4;
ctx.strokeStyle = 'red';
for (let theta = 0; theta <= 360; theta++){
    let k = theta * Math.PI / 180;
    let r = 300 * Math.sin(n * k);
    let x = r * Math.cos(k);
    let y = -r * Math.sin(k);
    ctx.lineTo(x, y);
    ctx.moveTo(x, y);
}
ctx.stroke();

Java code

There's a better way to do this. But this is a whole Java file that draws the Maurer rose.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

class Renderer extends JPanel {
    protected void paintComponent(Graphics g) {
        Maurer.maurer.draw((Graphics2D) g);
    }
}

public class Maurer implements ActionListener {
    static Maurer maurer;
    static final int width = 800, height = 800;
    Renderer renderer = new Renderer();

    static double n = 6, d = 71;

    public Maurer() {
        JFrame frame = new JFrame("maurer rose");
        frame.setSize(width, height);
        frame.add(renderer);
        frame.setDefaultCloseOperation(3);
        frame.setResizable(false);
        frame.setVisible(true);

        Timer timer = new Timer(0, this);
        timer.start();
    }

    public void actionPerformed(ActionEvent evt) {
        renderer.repaint();
    }

    public void draw(Graphics2D g) {
        g.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
        g.setColor(Color.white);
        g.fillRect(0, 0, width, height);

        g.setColor(new Color(0, 0, 255, 100));
        g.translate(width / 2, height / 2);
        double x = 0, y = 0;
        for (int theta = 0; theta <= 360; theta++) {
            double k = theta * d * Math.PI / 180;
            double r = 300 * Math.sin(n * k);
            double newX = r * Math.cos(k);
            double newY = r * Math.sin(k);
            g.drawLine((int)x, (int)y, (int)newX, (int)newY);
            x = newX;
            y = newY;
        }

        g.setColor(Color.red);
        g.setStroke(new BasicStroke(4));
        for (int theta = 0; theta <= 360; theta++) {
            double k = theta * Math.PI / 180;
            double r = 300 * Math.sin(n * k);
            double newX = r * Math.cos(k);
            double newY = r * Math.sin(k);
            g.drawLine((int)x, (int)y, (int)newX, (int)newY);
            x = newX;
            y = newY;
        }
    }

    public static void main(String[] args) {
        maurer = new Maurer();
    }
}

Visual Basic 6 code

 n = 7;
 d = 29 
 Xo = 400   'Origin
 Yo = 350 
 pi = 22 / 7
 
 DrawWidth = 1 
 For theta = 0 To 360
   k = theta * d * pi / 180
   r = 300 * Sin(n * k)
   x = Xo - r * Cos(k)
   y = Yo - r * Sin(k)
   Line -(x, y), QBColor(9)
 Next
 
 DrawWidth = 2
 For theta = 0 To 360
   k = theta * pi / 180
   r = 300 * Sin(n * k)
   x = Xo + r * Cos(k)
   y = Yo - r * Sin(k)
   Line -(x, y), QBColor(12)
 Next

Processing code

float n = 6;
float d = 71;

size(800, 800);

noFill();
background(255);
beginShape();
stroke(0, 0, 255);
strokeWeight(0.5);
for(int theta = 0; theta <= 360; theta++){
  float k = theta * d * PI / 180;
  float r = 300 * sin(n * k);
  float x = r * cos(k) + width/2;
  float y = r * sin(k) + height/2;
  vertex(x, y);
}
endShape();

beginShape();
stroke(255, 0, 0);
strokeWeight(4);
for(int theta = 0; theta <= 360; theta++){
  float k = theta * PI / 180;
  float r = 300 * sin(n * k);
  float x = r * cos(k) + width/2;
  float y = r * sin(k) + height/2;
  vertex(x, y);
}
endShape();

p5.js Code

/*p5.js is a port of Processing that can be run in the browser.  By going to editor.p5js.org, clearing the code there, pasting this in, and pressing the Play button, you can run it.  

A user interface was added so they can select the values of "n" and "d" and also change the formula from sin to any of the 6 basic trig functions (Note: only the sine funcion is a valid Maurer Rose)*/

let n;
let d;

function setup() {
  createCanvas(400, 400);
  //sets up the slider for n
  sliderPetals = createSlider(1,100,6);
  sliderPetals.style('width', '300px');
  sliderPetals.position(30,height+5);
  
  //sets up the slider for d
  sliderD = createSlider(1,360,71);
  sliderD.style('width', '300px');
  sliderD.position(30,height+30);
  
  //sets up the radio options for the angle formula
  angleOptions = createRadio();
  angleOptions.position(10, 460);
  angleOptions.option('sin');
  angleOptions.option('cos');
  angleOptions.option('tan');
  angleOptions.option('sec');
  angleOptions.option('csc');
  angleOptions.option('cot');
  angleOptions.style('width', '60px');
  
  //reduces the number of calculations your browser has to do
  frameRate(3);
}

function draw() {
  n = sliderPetals.value();
  d = sliderD.value();
  background(255);
  push();
  noFill();
  beginShape();
  stroke(0, 0, 255);
  strokeWeight(0.5);
  angleMode(DEGREES);
  translate(width/2, height/2);
  for(let theta = 0; theta <= 360; theta++){
    let k = theta * d;
    let r = width/2 * angleFormula(n,k);
    let  x = r * cos(k);
    let y = r * sin(k);
    vertex(x, y);
  }
  endShape();

  beginShape();
  stroke(255, 0, 0);
  strokeWeight(2);
  for(let theta = 0; theta <= 360; theta++){
    let k = theta;
    let r = width/2 * angleFormula(n,k);
    let x = r * cos(k);
    let y = r * sin(k);
    vertex(x, y);
  }
  endShape();
  pop();
  stroke(255);
  textFont('Georgia', 20);
  text('N (#Petals): ' + str(n), 10,20);
  text('D :' + str(d), 10, 50);
}


function angleFormula(n,k) {
  switch(angleOptions.value()) {
    case "sin": 
      return sin(k*n);
    case "cos": 
      return cos(k*n);
    case "tan": 
      return tan(k*n);
    case "csc": 
      return (1/sin(k*n));
    case "sec": 
      return (1/cos(k*n));
    case "cot": 
      return (1/tan(k*n));
    default:
      return sin(k*n);
  }
}

Python code

Python isn't very efficient when it comes to drawing, so it takes a while. But, the rose won't be upside down like it would in most other languages thanks to Turtle Graphics' ways.

import math, turtle

screen = turtle.Screen()
screen.setup(width=800, height=800, startx=0, starty=0)
screen.bgcolor('black')
pen = turtle.Turtle()
pen.speed(20)
n = 5
d = 97

pen.color('blue')
pen.pensize(0.5)
for theta in range(361):
    k = theta * d * math.pi / 180
    r = 300 * math.sin(n * k)
    x = r * math.cos(k)
    y = r * math.sin(k)
    pen.goto(x, y)

pen.color('red')
pen.pensize(4)
for theta in range(361):
    k = theta * math.pi / 180
    r = 300 * math.sin(n * k)
    x = r * math.cos(k)
    y = r * math.sin(k)
    pen.goto(x, y)

C++ code

SFML required

#include "SFML/System.hpp"
#include "SFML/Graphics.hpp"
#include "SFML/Audio.hpp"
#include "SFML/Window.hpp"
#include <iostream>
#include <math.h>
# define M_PI  3.14159265358979323846

int main() {
	int n = 6;
	int d = 71;
	sf::RenderWindow Window(sf::VideoMode(800, 800), "Rose Test", sf::Style::Close );
	sf::VertexArray Rose(sf::PrimitiveType::Lines);
	sf::VertexArray Outline(sf::PrimitiveType::Lines);
	Window.setFramerateLimit(30);

	while (Window.isOpen()) {
		sf::Event event;

		while (Window.pollEvent(event))
		{
			switch (event.type)
			{
			case sf::Event::Closed:
				Window.close();
				break;
			}
		}
		for (int i = 0; i <= 360; i++)
		{
			double k = i * d * M_PI / 180;
			double r = 300 * sin(n * k);
			double x = -r * cos(k);
			double y = -r * sin(k);
			Rose.append(sf::Vertex(sf::Vector2f(x + Window.getSize().x / 2, y + Window.getSize().y / 2), sf::Color::Blue));
		}
		for (int i = 0; i <= 360; i++)
		{
			double k = i * M_PI / 180;
			double r = 300 * sin(n * k);
			double x = r * cos(k);
			double y = -r * sin(k);
			Outline.append(sf::Vertex(sf::Vector2f(x + Window.getSize().x / 2, y + Window.getSize().y / 2), sf::Color::Red));
		}
		Window.clear(sf::Color::White);
		Window.draw(Rose);
		Window.draw(Outline);
		Window.display();

	}
	return 0;
}

References

  • Maurer, Peter M. (August–September 1987). "A Rose is a Rose..." The American Mathematical Monthly. 94 (7): 631–645. doi:10.2307/2322215. JSTOR 2322215.
  • Weisstein, Eric W. "Maurer roses". MathWorld. (Interactive Demonstrations)

    Interactive Demonstration: https://codepen.io/Igor_Konovalov/full/ZJwPQv/ Music player : https://labo86.fr/

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.