Multi-wavelength anomalous dispersion

Multi-wavelength anomalous diffraction (sometimes Multi-wavelength anomalous dispersion; abbreviated MAD) is a technique used in X-ray crystallography that facilitates the determination of the three-dimensional structure of biological macromolecules (e.g. DNA, drug receptors) via solution of the phase problem.[1]

MAD was developed by Wayne Hendrickson while working as a postdoctoral researcher under Jerome Karle at the United States Naval Research Laboratory.[2] The mathematics upon which MAD (and progenitor Single wavelength anomalous dispersion) were based were developed by Jerome Karle, work for which he was awarded the 1985 Nobel Prize in Chemistry (along with Herbert Hauptman).

See also

References

  1. Hendrickson W, Ogata C (1997). "Phase determination from multiwavelength anomalous diffraction measurements". Methods in Enzymology. 276: 494–523. doi:10.1016/S0076-6879(97)76074-9. ISBN 978-0-12-182177-7. PMID 27799111.
  2. Hendrickson WA (1985). "Analysis of Protein Structure from Diffraction Measurement at Multiple Wavelengths". Transactions of the ACA. 21.

Further reading

Computer programs

Tutorials and examples

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.