RAD54B

DNA repair and recombination protein RAD54B is a protein that in humans is encoded by the RAD54B gene.[5][6][7]

RAD54B
Identifiers
AliasesRAD54B, RDH54, RAD54 homolog B (S. cerevisiae), RAD54 homolog B
External IDsOMIM: 604289 MGI: 3605986 HomoloGene: 8240 GeneCards: RAD54B
Gene location (Human)
Chr.Chromosome 8 (human)[1]
Band8q22.1Start94,371,960 bp[1]
End94,475,115 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

25788

623474

Ensembl

ENSG00000197275

ENSMUSG00000078773

UniProt

Q9Y620
O95073

Q8BKE5
Q6PFE3

RefSeq (mRNA)

NM_001205262
NM_001205263
NM_006550
NM_012415
NM_134434

NM_001039556
NM_001256145
NM_177285

RefSeq (protein)

NP_001243071
NP_001034645
NP_001243074
NP_001034645
NP_001243074

Location (UCSC)Chr 8: 94.37 – 94.48 MbChr 4: 11.56 – 11.62 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The protein encoded by this gene belongs to the DEAD-like helicase superfamily. It shares similarity with Saccharomyces cerevisiae RAD54 and RDH54, both of which are involved in homologous recombination and repair of DNA. This protein binds to double-stranded DNA, and displays ATPase activity in the presence of DNA. This gene is highly expressed in testis and spleen, which suggests active roles in meiotic and mitotic recombination. Homozygous mutations of this gene were observed in primary lymphoma and colon cancer.[7]

Interactions

RAD54B has been shown to interact with RAD51.[6]

Cancer

The RAD54B gene is somatically mutated or deleted in numerous types of cancer including colorectal cancer (~3.3%), breast cancer (~3.4%), and lung cancer (~2.6%).[8] In North America, these three cancers alone account for about 20,500 individuals diagnosed annually with RAD54B defective cancer. In a pre-clinical study, colon cancer cells defective in RAD54B were determined to be selectively killed by inhibitors of the DNA repair protein PARP1.[8] Inhibitors of PARP1 likely impede alternative DNA repair responses that might otherwise compensate for loss of the RAD54B pathway in cancer cells. Thus RAD54B-deficient cancer cells treated with a PARP1 inhibitor are apparently more vulnerable to killing by naturally occurring DNA damages than non-cancerous cells without a RAD54 defect (see article Synthetic lethality).

References

  1. GRCh38: Ensembl release 89: ENSG00000197275 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000078773 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hiramoto T, Nakanishi T, Sumiyoshi T, Fukuda T, Matsuura S, Tauchi H, Komatsu K, Shibasaki Y, Inui H, Watatani M, Yasutomi M, Sumii K, Kajiyama G, Kamada N, Miyagawa K, Kamiya K (Jun 1999). "Mutations of a novel human RAD54 homologue, RAD54B, in primary cancer". Oncogene. 18 (22): 3422–6. doi:10.1038/sj.onc.1202691. PMID 10362364.
  6. Tanaka K, Hiramoto T, Fukuda T, Miyagawa K (Sep 2000). "A novel human rad54 homologue, Rad54B, associates with Rad51". J Biol Chem. 275 (34): 26316–21. doi:10.1074/jbc.M910306199. PMID 10851248.
  7. "Entrez Gene: RAD54B RAD54 homolog B (S. cerevisiae)".
  8. McAndrew EN, Lepage CC, McManus KJ (December 2016). "The synthetic lethal killing of RAD54B-deficient colorectal cancer cells by PARP1 inhibition is enhanced with SOD1 inhibition". Oncotarget. 7 (52): 87417–87430. doi:10.18632/oncotarget.13654. PMC 5349998. PMID 27902462.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.