Rieke metal

A Rieke metal is a highly reactive metal powder generated by reduction of a metal salt with an alkali metal. These materials are named after Reuben D. Rieke, who first described the recipes for their preparation. Among the many metals that have been generated by this method are Mg, Ca, Ti, Fe, Co, Ni, Cu, Zn, and In, which in turn are called Rieke-magnesium, Rieke-calcium, etc.

Highly reactive activated magnesium (Rieke magnesium)

Rieke metals are highly reactive because they have high surface area and lack surface oxides that can retard reaction of bulk materials. The particles are very small, ranging from 1-2 μm down to 0.1 μm or less. Some metals like nickel and copper give black colloidal suspensions that do not settle, even with centrifugation, and cannot be filtered. Other metals such as magnesium and cobalt give larger particles, but these are found to be composed mainly of the alkali salt by-product, with the metal dispersed in them as much finer particles or even as an amorphous phase.[1]

Preparation

Rieke metals are usually prepared by a reduction of an anhydrous metal chloride with an alkali metal, in a suitable solvent.[1] For example, Rieke magnesium can be prepared from magnesium chloride with potassium as the reductant:[2]

MgCl2 + 2 K → Mg + 2 KCl

Rieke originally described three general procedures:

  • Reaction with molten sodium or potassium in a solvent whose boiling point is higher than the metal's melting point, and which can dissolve some of the anhydrous salt, in an inert atmosphere. Suggested combinations were potassium in tetrahydrofuran (THF), sodium in 1,2-dimethoxyethane, and either metal with benzene or toluene. The exhothermic reaction takes a few hours, and usually requires refluxing.[1]
  • Reaction with an alkali metal at temperatures below its melting point, with a catalytic amount (5-10% by mole) of an electron carrier such as naphthalene[1] or biphenyl.[3] This method can be used with lithium as the reducing agent, even at room temperature, and is therefore less hazardous than the previous method; and often results in more reactive powders.[2]
  • Reaction with previously prepared lithium naphthalide[1] or lithium biphenylide[3] instead of lithium. This process can be carried out at even lower temperatures, below ambient. Although slower, it was found to produce even smaller particles.[1]

The alkali metal chloride coprecipitates with the finely divided metal, which can be used in situ or separated by washing away the alkali chloride with a suitable solvent.[1]

Uses

Rieke zinc has attracted the greatest attention of all the Rieke metals. Interest is motivated by the ability of Rieke Zn to convert 2,5-dibromothiophenes to the corresponding polythiophene.[4] Rieke-Zn also reacts with bromoesters to give organozinc reagents of value for the Reformatsky reaction.[5]

Rieke magnesium reacts with aryl halides, some even at −78 °C, to afford the corresponding Grignard reagents, often with considerable selectivity.[6] Rieke magnesium is famous for enabling the formation of "impossible Grignard reagents" such as those derived from aryl fluorides and from 2-chloronorbornane.[2]

History

The use of highly reactive metals in chemical synthesis was popularized in the 1960s. One development in this theme is the use of metal vapor synthesis, as described by Skell, Timms, Ozin, and others. All of these methods relied on elaborate instrumentation to vaporize the metals, releasing an atomic form of these reactants.

In 1972, Reuben D. Rieke, a professor of chemistry at the University of North Carolina, published the method that now bears his name.[7] In contrast to previous methods, it did not require special equipment, and the main challenges were only the handling of pyrophoric reagents and/or products, and the need for anhydrous reagents and air-free techniques. Thus his discovery gained much attention because of its simplicity and the reactivity of the activated metals.

Rieke continued this work at the University of Nebraska-Lincoln. He and his wife Loretta founded Rieke Metals LLC in 1991, based on these materials.[8]

Safety

Production and use of Rieke metals often involves the handling of highly pyrophoric materials, requiring the use of air-free techniques.

References

  1. Rieke, R. D. (1989). "Preparation of Organometallic Compounds from Highly Reactive Metal Powders". Science. 246 (4935): 1260–1264. Bibcode:1989Sci...246.1260R. doi:10.1126/science.246.4935.1260. PMID 17832221.
  2. Rieke, R. D.; Bales, S. E.; Hudnall, P. M.; Burns, T. P.; Poindexter, G S. (1988). "Highly Reactive Magnesium for the Preparation of Grignard Reagents: 1-Norbornane Acid". Organic Syntheses.CS1 maint: multiple names: authors list (link); Collective Volume, 6, p. 845
  3. Rieke, R. D.; Wu, T.-C.; Rieke, L. I. (1998). "Highly Reactive Calcium for the Preparation of Organocalcium Reagents: 1-Adamantyl Calcium Halides and Their Addition to Ketones: 1-(1-Adamantyl)cyclohexanol"". Organic Syntheses.CS1 maint: multiple names: authors list (link); Collective Volume, 9, p. 9
  4. Chen, T.-A.; Wu, X.; Rieke, R. D. (1995). "Regiocontrolled Synthesis of Poly(3-alkylthiophenes) Mediated by Rieke Zinc: Their Characterization and Solid-State Properties". Journal of the American Chemical Society. 117: 233–244. doi:10.1021/ja00106a027.
  5. Rieke, R. D.; Hanson, M. V. (1997). "New Organometallic Reagents Using Highly Reactive Metals". Tetrahedron. 53 (6): 1925–1956. doi:10.1016/S0040-4020(96)01097-6.
  6. Lee, J.-S.; Velarde-Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. (2000). "Low-Temperature Formation of Functionalized Grignard Reagents from Direct Oxidative Addition of Active Magnesium to Aryl Bromides". Journal of Organic Chemistry. 65 (17): 5428–5430. doi:10.1021/jo000413i. PMID 10993378.
  7. Reuben D. Rieke, Phillip M. Hudnall (1972). "Activated Metals. I. Preparation of Highly reactive magnesium metal". J. Am. Chem. Soc. 94 (20): 7178–7179. doi:10.1021/ja00775a066.
  8. (2018): "About Us". Rieke Metals's website, accessed on 2019-03-19.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.