Smooth morphism
In algebraic geometry, a morphism between schemes is said to be smooth if
- (i) it is locally of finite presentation
- (ii) it is flat, and
- (iii) for every geometric point the fiber is regular.
(iii) means that each geometric fiber of f is a nonsingular variety (if it is separated). Thus, intuitively speaking, a smooth morphism gives a flat family of nonsingular varieties.
If S is the spectrum of an algebraically closed field and f is of finite type, then one recovers the definition of a nonsingular variety.
Equivalent definitions
There are many equivalent definitions of a smooth morphism. Let be locally of finite presentation. Then the following are equivalent.
- f is smooth.
- f is formally smooth (see below).
- f is flat and the sheaf of relative differentials is locally free of rank equal to the relative dimension of .
- For any , there exists a neighborhood of x and a neighborhood of such that and the ideal generated by the m-by-m minors of is B.
- Locally, f factors into where g is étale.
- Locally, f factors into where g is étale.
A morphism of finite type is étale if and only if it is smooth and quasi-finite.
A smooth morphism is stable under base change and composition. A smooth morphism is locally of finite presentation.
A smooth morphism is universally locally acyclic.
Examples
Smooth morphisms are supposed to geometrically correspond to smooth submersions in differential geometry; that is, they are smooth locally trivial fibrations over some base space (by Ehresmann's theorem).
Smooth Morphism to a Point
Let be the morphism of schemes
It is smooth because of the Jacobian condition: the Jacobian matrix
vanishes at the points which has an empty intersection with the polynomial, since
which are both non-zero.
Trivial Fibrations
Given a smooth scheme the projection morphism
is smooth.
Vector Bundles
Every vector bundle over a scheme is a smooth morphism. For example, it can be shown that the associated vector bundle of over is the weighted projective space minus a point
sending
Notice that the direct sum bundles can be constructed using the fiber product
Separable Field Extensions
Recall that a field extension is called separable iff given a presentation
we have that . We can reinterpret this definition in terms of Kähler differentials as follows: the field extension is separable iff
Notice that this includes every perfect field: finite fields and fields of characteristic 0.
Non-Examples
Singular Varieties
If we consider of the underlying algebra for a projective variety , called the affine cone of , then the point at the origin is always singular. For example, consider the affine cone of a quintic -fold given by
Then the Jacobian matrix is given by
which vanishes at the origin, hence the cone is singular. Affine hypersurfaces like these are popular in singularity theory because of their relatively simple algebra but rich underlying structures.
Another example of a singular variety is the projective cone of a smooth variety: given a smooth projective variety its projective cone is the union of all lines in intersecting . For example, the projective cone of the points
is the scheme
If we look in the chart this is the scheme
and project it down to the affine line , this is a family of four points degenerating at the origin. The non-singularity of this scheme can also be checked using the Jacobian condition.
Degenerating Families
Consider the flat family
Then the fibers are all smooth except for the point at the origin. Since smoothness is stable under base-change, this family is not smooth.
Non-Separable Field Extensions
For example, the field is non-separable, hence the associated morphism of schemes is not smooth. If we look at the minimal polynomial of the field extension,
then , hence the Kähler differentials will be non-zero.
Formally smooth morphism
One can define smoothness without reference to geometry. We say that an S-scheme X is formally smooth if for any affine S-scheme T and a subscheme of T given by a nilpotent ideal, is surjective where we wrote . Then a morphism locally of finite type is smooth if and only if it is formally smooth.
In the definition of "formally smooth", if we replace surjective by "bijective" (resp. "injective"), then we get the definition of formally étale (resp. formally unramified).
Smooth base change
Let S be a scheme and denote the image of the structure map . The smooth base change theorem states the following: let be a quasi-compact morphism, a smooth morphism and a torsion sheaf on . If for every in , is injective, then the base change morphism is an isomorphism.
References
- J. S. Milne (2012). "Lectures on Étale Cohomology"
- J. S. Milne. Étale cohomology, volume 33 of Princeton Mathematical Series . Princeton University Press, Princeton, N.J., 1980.