Timeline of computational physics

The following timeline starts with the invention of the modern computer in the late interwar period.

1930s

1940s

  • Nuclear bomb and ballistics simulations at Los Alamos and BRL, respectively.[1]
  • Monte Carlo simulation (voted one of the top 10 algorithms of the 20th century by Jack Dongarra and Francis Sullivan in the 2000 issue of Computing in Science and Engineering)[2] is invented at Los Alamos by von Neumann, Ulam and Metropolis.[3][4][5]
  • First hydrodynamic simulations performed at Los Alamos.[6][7]
  • Ulam and von Neumann introduce the notion of cellular automata.[8][9]

1950s

1960s

1970s

1980s

See also

References

  1. Ballistic Research Laboratory, Aberdeen Proving Grounds, Maryland.
  2. "MATH 6140 - Top ten algorithms from the 20th Century". www.math.cornell.edu.
  3. Metropolis, N. (1987). "The Beginning of the Monte Carlo method" (PDF). Los Alamos Science. No. 15, Page 125.. Accessed 5 may 2012.
  4. S. Ulam, R. D. Richtmyer, and J. von Neumann(1947). Statistical methods in neutron diffusion. Los Alamos Scientific Laboratory report LAMS–551.
  5. N. Metropolis and S. Ulam (1949). The Monte Carlo method. Journal of the American Statistical Association 44:335–341.
  6. Richtmyer, R. D. (1948). Proposed Numerical Method for Calculation of Shocks. Los Alamos, NM: Los Alamos Scientific Laboratory LA-671.
  7. A Method for the Numerical Calculation of Hydrodynamic Shocks. Von Neumann, J.; Richtmyer, R. D. Journal of Applied Physics, Vol. 21, pp. 232–237
  8. Von Neumann, J., Theory of Self-Reproducing Automata, Univ. of Illinois Press, Urbana, 1966.
  9. http://mathworld.wolfram.com/CellularAutomaton.html
  10. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. (1953). "Equations of State Calculations by Fast Computing Machines". Journal of Chemical Physics. 21 (6): 1087–1092. Bibcode:1953JChPh..21.1087M. doi:10.1063/1.1699114.
  11. Unfortunately, Alder's thesis advisor was unimpressed, so Alder and Frankel delayed publication of their results until much later. Alder, B. J. , Frankel, S. P. , and Lewinson, B. A. , J. Chem. Phys., 23, 3 (1955).
  12. Reed, Mark M. "Stan Frankel". Hp9825.com. Retrieved 1 December 2017.
  13. Fermi, E. (posthumously); Pasta, J.; Ulam, S. (1955) : Studies of Nonlinear Problems (accessed 25 Sep 2012). Los Alamos Laboratory Document LA-1940. Also appeared in 'Collected Works of Enrico Fermi', E. Segre ed. , University of Chicago Press, Vol.II,978–988,1965. Recovered 21 Dec 2012
  14. Broadbent, S. R.; Hammersley, J. M. (2008). "Percolation processes". Math. Proc. of the Camb. Philo. Soc.; 53 (3): 629.
  15. Alder, B. J.; Wainwright, T. E. (1959). "Studies in Molecular Dynamics. I. General Method". Journal of Chemical Physics. 31 (2): 459. Bibcode:1959JChPh..31..459A. doi:10.1063/1.1730376.
  16. Minovitch, Michael: "A method for determining interplanetary free-fall reconnaissance trajectories," Jet Propulsion Laboratory Technical Memo TM-312-130, pages 38-44 (23 August 1961).
  17. Christopher Riley and Dallas Campbell, Oct 22, 2012. "The maths that made Voyager possible". BBC News Science and Environment. Recovered 16 Jun 2013.
  18. R. J. Glauber. "Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963), 294–307.
  19. Lorenz, Edward N. (1963). "Deterministic Nonperiodic Flow" (PDF). Journal of the Atmospheric Sciences. 20 (2): 130–141. Bibcode:1963JAtS...20..130L. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  20. Rahman, A (1964). "Correlations in the Motion of Atoms in Liquid Argon". Phys Rev. 136 (2A): A405–A41. Bibcode:1964PhRv..136..405R. doi:10.1103/PhysRev.136.A405.
  21. Kohn, Walter; Hohenberg, Pierre (1964). "Inhomogeneous Electron Gas". Physical Review. 136 (3B): B864–B871. Bibcode:1964PhRv..136..864H. doi:10.1103/PhysRev.136.B864.
  22. Kohn, Walter; Sham, Lu Jeu (1965). "Self-Consistent Equations Including Exchange and Correlation Effects". Physical Review. 140 (4A): A1133–A1138. Bibcode:1965PhRv..140.1133K. doi:10.1103/PHYSREV.140.A1133.
  23. "The Nobel Prize in Chemistry 1998". Nobelprize.org. Retrieved 2008-10-06.
  24. Zabusky, N. J.; Kruskal, M. D. (1965). "Interaction of 'solitons' in a collisionless plasma and the recurrence of initial states". Phys. Rev. Lett. 15 (6): 240–243. Bibcode 1965PhRvL..15..240Z. doi:10.1103/PhysRevLett.15.240.
  25. "Definition of SOLITON". Merriam-webster.com. Retrieved 1 December 2017.
  26. K. Kawasaki, "Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I. Phys. Rev. 145, 224 (1966)
  27. Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard−Jones Molecules". Physical Review. 159 (1): 98–103. Bibcode:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98.
  28. Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007). "Section 17.4. Second-Order Conservative Equations". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press. ISBN 978-0-521-88068-8.
  29. Brackx, F.; Constales, D. (1991-11-30). Computer Algebra with LISP and REDUCE: An Introduction to Computer-aided Pure Mathematics. Springer Science & Business Media. ISBN 9780792314417.
  30. Contopoulos, George (2004-06-16). Order and Chaos in Dynamical Astronomy. Springer Science & Business Media. ISBN 9783540433606.
  31. Jose Romildo Malaquias; Carlos Roberto Lopes. "Implementing a computer algebra system in Haskell" (PDF). Repositorio.ufop.br. Retrieved 1 December 2017.
  32. "Computer Algebra" (PDF). Mosaicsciencemagazine.org. Retrieved 1 December 2017.
  33. Frank Close. The Infinity Puzzle, pg 207. OUP, 2011.
  34. Stefan Weinzierl:- "Computer Algebra in Particle Physics." pgs 5–7. arXiv:hep-ph/0209234. All links accessed 1 January 2012. "Seminario Nazionale di Fisica Teorica", Parma, September 2002.
  35. J. Hardy, Y. Pomeau, and O. de Pazzis (1973). "Time evolution of two-dimensional model system I: invariant states and time correlation functions". Journal of Mathematical Physics, 14:1746–1759.
  36. J. Hardy, O. de Pazzis, and Y. Pomeau (1976). "Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions". Physical Review A, 13:1949–1961.
  37. Wilson, K. (1974). "Confinement of quarks". Physical Review D. 10 (8): 2445. Bibcode:1974PhRvD..10.2445W. doi:10.1103/PhysRevD.10.2445.
  38. Car, R.; Parrinello, M (1985). "Unified Approach for Molecular Dynamics and Density-Functional Theory". Physical Review Letters. 55 (22): 2471–2474. Bibcode:1985PhRvL..55.2471C. doi:10.1103/PhysRevLett.55.2471. PMID 10032153.
  39. Swendsen, R. H., and Wang, J.-S. (1987), Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58(2):8688.
  40. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems, MIT, Cambridge, (1987).
  41. Rokhlin, Vladimir (1985). "Rapid Solution of Integral Equations of Classic Potential Theory." J. Computational Physics Vol. 60, pp. 187–207.
  42. L. Greengard and V. Rokhlin, "A fast algorithm for particle simulations," J. Comput. Phys., 73 (1987), no. 2, pp. 325–348.
  43. Wolff, Ulli (1989), "Collective Monte Carlo Updating for Spin Systems", Physical Review Letters, 62 (4): 361
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.