Transition metal phosphido complexes

A transition metal phosphido complex is a coordination complex containing a phosphido ligand (R2P, where R = H, organic substituent). With two lone pairs on phosphorus, the phosphido anion (R2P) is comparable to an amido anion (R2N), except that the M-P distances are longer and the phosphorus atom is more sterically accessible. For these reasons, phosphido is often a bridging ligand.[1]

Synthesis

Phosphido ligands are often installed by salt metathesis reactions. Sources of R2P+ and R2P are provided by phosphorus halides and alkali metal phosphides respectively. Illustrative of the use of R2PCl-like reagents is the synthesis of a diiron diphosphide:[2]

Na2Fe2(CO)8 + 2 Ph2PCl → Fe2(PPh2)2(CO)6 + 2 NaCl + 2 CO

The alternative salt metathesis route involves the reaction of alkali metal diorganophosphides with metal halides. A typical phosphide reagent is lithium diphenylphosphide.[3]

Example for the synthesis of phosphido complex

Alkali metal phosphides sometimes reduce the metal center.[4]

Example for the synthesis of phosphido complex

Another way to generate the transition-metal phosphido complexes are by direct activation of P-H bonds and is mostly seen in the late-transition-metal complexes. For example, the reaction of Vaska's complex analogs with the parent phosphine generate the following transition-metal phosphido complex.[5]

Example for the synthesis of phosphido complex

Structure

Structure of the Mo2P4C8 core of Mo2[P(tert-Bu)2]4.[6]
Illustrative complexes of "planar phosphido ligands".
Illustrative complexes of "pyramidal phosphido ligands".

Complexes of the phosphide ligand can be classified into one of three classes:

  • those where the phosphide is a terminal ligand and phosphorus is pyramidal,
  • those where the phosphide is a terminal ligand and phosphorus is planar,
  • those where the phosphide is a bridging ligand and phosphorus is tetrahedral.

Terminal phosphido ligands

In most complexes with terminal phosphido ligands, phosphorus is pyramidal, as expected with a stereochemically active lone pair of electrons. The M-P bond length in the pyramidal phosphide complex is longer than the M-P bond length in corresponding transition metal phosphine complexes. The pyramidal phosphido complex. In the complex, the Os-PHPh bond is 0.11 Å longer than the Os-PPh3 and the Os-P-C angle is 113o. The elongated Os-PHPh bond is often attributed to the electronic repulsion of the lone pair and nonbonding electrons on Os.[7] Also, in another ruthenium complex, the Ru-P(Me)Ph bond is 0.17 Å longer than Ru-PH(Me)Ph in the related phosphine ligand version of the complex, [(dmpe)2Ru(H)PH(Me)Ph]+.[8] Additionally electronic repulsion of the P-centered lone pair and metal-based electrons enhance the nucleophilicity of the phosphide ligand. This high basicity and high nucleophilicity leads to the dimerization reaction.

Resonance structures for complexes of planar phosphido ligands.

As implied in the resonance structures A and B, some terminal phosphido ligands engage in M-P multiple bonding. In the resonance structure A, the lone pair from the p-orbital on phosphorus donates to the vacant orbital on the metal to form a π-bond. Because of the π-bonding interaction in resonance structure A, it is planar at phosphorus and M-P bond-length is shorter and M-P-R bond-angle is larger. Planar phosphido complexes usually have shorter M-P bonds and larger M-P-R angles. In the tungsten complex, the W-PHPh bond is 0.26 Å shorter than W-PEt3 bond in the same complex, and the W-P-C angle is 140°.[9] Another example is a ruthenium complex. In those complex, the Ru-PCy2 bond is 0.11 Å shorter than Ru-PPh3 bond and the Ru-P-C angle is 127°.[10]

While the planar and pyramidal phosphides can be distinguished clearly, in one case, a pyramidal phosphide can be converted to planar phosphide by one-electron oxidation.[11]

The inversion of configuration at pyramidal terminal phosphides has been observed by 31P NMR spectroscopy.[12][13]

examples of the inversion of configuration at phosphorus in phosphido complex

Bridging phosphido ligands

Structure of Fe2(PPh2)2(CO)6.[14]

In most of its complexes, the phosphido ligand is a bridging ligand. No lone pairs remain on phosphorus. These complexes have the formula [M(μ-PR2)Ln]2. One example is [Fe(μ-PPh2)(CO)3]2.

Applications

Metal phosphido complexes are however intermediates the catalytic hydrophosphinations.

Mechanism proposed for hydrophosphination catalyzed by Pt(II) phosphido complex.

Some late metal hydrophosphination catalysts rely on oxidative addition of a P-H bond. For example, a Pt(0) catalyst that undergoes oxidative addition of a secondary phosphine to form the corresponding Pt(II) phosphido complex, which react with electrophilic alkenes such as acrylonitrile. This P-C bond forming step proceeds through an outer-sphere, Michael-type addition.[15] cAlkene insertion into the metal-hydrogen bond is also invoked in some hydrophosphinations.[16]

Metal phosphide have been used in the synthesis of P-stereogenic phosphines by exploiting the high nucleophilicity in the pyramidal phosphide complex.[17][1]

Cycle for enantioselective synthesis of tertiary phosphines by using phosphido complex intermediate

References

  1. Scriban, Corina; Glueck, David S. (March 2006). "Platinum-Catalyzed Asymmetric Alkylation of Secondary Phosphines: Enantioselective Synthesis of P-Stereogenic Phosphines". Journal of the American Chemical Society. 128 (9): 2788–2789. doi:10.1021/ja058096q. ISSN 0002-7863. PMID 16506743.
  2. Collman, James P.; Rothrock, Richard K.; Finke, Richard G.; Rose-Munch, Francoise (1977). "Metal promoted alkyl migration in a bimetallic complex". Journal of the American Chemical Society. 99 (22): 7381–7383. doi:10.1021/ja00464a061.
  3. Hey-Hawkins, E. (September 1994). "Bis(cyclopentadienyl)zirconium(IV) or hafnium-(IV) Compounds with Si-, Ge-, Sn-, N-, P-, As-, Sb-, O-, S-, Se-, Te-, or Transition Metal-Centered Anionic Ligands". Chemical Reviews. 94 (6): 1661–1717. doi:10.1021/cr00030a009. ISSN 0009-2665.
  4. Schäufer, H.; Binder, D. (March 1987). "Übergangsmetallphosphidokomplexe. XI. Diphosphenkomplexe des Typs (R3P)2Ni[η2-(PR′)2] und phosphidoverbrückte Nickel(I)-Komplexe des Typs [R3PNiP(SiMe3)2]2 (Ni–Ni)". Zeitschrift für anorganische und allgemeine Chemie (in German). 546 (3): 55–78. doi:10.1002/zaac.19875460307. ISSN 0044-2313.
  5. Ebsworth, E. A. V.; Gould, Robert O.; Mayo, Richard A.; Walkinshaw, Malcolm (1987). "Reactions of phosphine, arsine, and stibine with carbonylbis(triethylphosphine)iridium( I ) halides. Part 1. Reactions in toluene; X-ray crystal structures of [Ir(CO)ClH(PEt 3 ) 2 (AsH 2 )] and [Ir(CO)XH(PEt 3 ) 2 (µ-ZH 2 )RuCl 2 (η 6 -MeC 6 H 4 CHMe 2 -p)](X = Br, Z = P; X = Cl, Z = As)". J. Chem. Soc., Dalton Trans. (11): 2831–2838. doi:10.1039/DT9870002831. ISSN 0300-9246.
  6. Jones, Richard A.; Lasch, Jon G.; Norman, Nicholas C.; Whittlesey, Bruce R.; Wright, Thomas C. (1983). "Synthesis and x-ray crystal structure of Mo2(μ-t-Bu2P)2(t-Bu2P)2(Mo-Mo); the first structurally characterized binary transition-metal phosphide". Journal of the American Chemical Society. 105 (19): 6184–6185. doi:10.1021/ja00357a054.
  7. Bohle, D. Scott.; Jones, Tony C.; Rickard, Clifton E. F.; Roper, Warren R. (August 1986). "Terminal phosphido complexes of ruthenium(II) and osmium(II): synthesis, reactivity, and crystal structures of Os(PHPh)Cl(CO)2(PPh3)2 and Os{PH(OMe)Ph}(CO)2(PPh3)2". Organometallics. 5 (8): 1612–1619. doi:10.1021/om00139a017. ISSN 0276-7333.
  8. Chan, Vincent S.; Stewart, Ian C.; Bergman, Robert G.; Toste, F. Dean (March 2006). "Asymmetric Catalytic Synthesis of P-Stereogenic Phosphines via a Nucleophilic Ruthenium Phosphido Complex". Journal of the American Chemical Society. 128: 2786–2787. doi:10.1021/ja058100y. ISSN 0002-7863. PMID 16506742.
  9. Rocklage, Scott M.; Schrock, Richard R.; Churchill, Melvyn Rowen; Wasserman, Harvey J. (October 1982). "Multiple Metal Carbon Bonds. Part 29. Facile Conversion of Tungsten(VI) Neopentylidyne Complexes into Oxo and Imido Neopentylidene Complexes and the Crystal Structure of W(CCMe3)(PHPh)(PEt3)2Cl2". Organometallics. 1 (10): 1332–1338. doi:10.1021/om00070a015. ISSN 0276-7333.
  10. Derrah, Eric J.; Pantazis, Dimitrios A.; McDonald, Robert; Rosenberg, Lisa. "A Highly Reactive Ruthenium Phosphido Complex Exhibiting Ru−P π-Bonding". Organometallics. 26: 1473–1482. doi:10.1021/om0700056. ISSN 0276-7333.
  11. Melenkivitz, Rory; Mindiola, Daniel J.; Hillhouse, Gregory L. (2002). "Monomeric Phosphido and Phosphinidene Complexes of Nickel". Journal of the American Chemical Society. 124: 3846–3847. doi:10.1021/ja017787t. ISSN 0002-7863. PMID 11942818.
  12. Baker, R. T.; Krusic, P. J.; Tulip, T. H.; Calabrese, J. C.; Wreford, S. S. (October 1983). "Synthesis and molecular structures of homoleptic dicyclohexylphosphide complexes of the early transition metals". Journal of the American Chemical Society. 105 (22): 6763–6765. doi:10.1021/ja00360a061. ISSN 0002-7863.
  13. Baker, R. T.; Whitney, J. F.; Wreford, S. S. (August 1983). "Characterization and interconversion of metal-phosphorus single and double bonds: bis(cyclopentadienyl)zirconium and -hafnium bis(diorganophosphide) complexes". Organometallics. 2 (8): 1049–1051. doi:10.1021/om50002a022. ISSN 0276-7333.
  14. Ballinas-López, María Gabriela; Padilla-Martínez, Itzia I.; Martínez-Martínez, Francisco J.; Höpfl, Herbert; García-Báez, Efrén V. (2005). "Di-μ-diphenylphosphido-bis[tricarbonyliron(II)] dichloromethane solvate". Acta Crystallographica Section E. 61 (8): m1475–m1477. doi:10.1107/S1600536805020982.
  15. Scriban, C.; Glueck, D. S.; Zakharov, L. N.; Kassel, W. S.; Dipasquale, A. G.; Golen, J. A.; Rheingold, A. L. (2006). "P−C and C−C Bond Formation by Michael Addition in Platinum-Catalyzed Hydrophosphination and in the Stoichiometric Reactions of Platinum Phosphido Complexes with Activated Alkenes". Organometallics. 25 (24): 5757. doi:10.1021/om060631n.
  16. Shulyupin, M. O.; Kazankova, M. A.; Beletskaya, I. P. Org. Lett. 2002, 4, 761.Shulyupin, M. O.; Kazankova, M. A.; Beletskaya, I. P. (2002). "Catalytic Hydrophosphination of Styrenes". Organic Letters. 4 (5): 761. doi:10.1021/ol017238s.
  17. Chan, Vincent S.; Stewart, Ian C.; Bergman, Robert G.; Toste, F. Dean (March 2006). "Asymmetric Catalytic Synthesis of P -Stereogenic Phosphines via a Nucleophilic Ruthenium Phosphido Complex". Journal of the American Chemical Society. 128 (9): 2786–2787. doi:10.1021/ja058100y. ISSN 0002-7863.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.