Virtually Haken conjecture
In topology, an area of mathematics, the virtually Haken conjecture states that every compact, orientable, irreducible three-dimensional manifold with infinite fundamental group is virtually Haken. That is, it has a finite cover (a covering space with a finite-to-one covering map) that is a Haken manifold.
After the proof of the geometrization conjecture by Perelman, the conjecture was only open for hyperbolic 3-manifolds.
The conjecture is usually attributed to Friedhelm Waldhausen in a paper from 1968,[1] although he did not formally state it. This problem is formally stated as Problem 3.2 in Kirby's problem list.
A proof of the conjecture was announced on March 12, 2012 by Ian Agol in a seminar lecture he gave at the Institut Henri Poincaré. The proof appeared shortly thereafter in a preprint which was eventually published in Documenta Mathematica.[2] The proof was obtained via a strategy by previous work of Daniel Wise and collaborators, relying on actions of the fundamental group on certain auxiliary spaces (CAT(0) cube complexes)[3] It used as an essential ingredient the freshly-obtained solution to the surface subgroup conjecture by Jeremy Kahn and Vladimir Markovic.[4][5] Other results which are directly used in Agol's proof include the Malnormal Special Quotient Theorem of Wise[6] and a criterion of Nicolas Bergeron and Wise for the cubulation of groups.[7]
See also
Notes
- Waldhausen, Friedhelm (1968). "On irreducible 3-manifolds which are sufficiently large". Annals of Mathematics. 87 (1): 56–88. doi:10.2307/1970594. JSTOR 1970594. MR 0224099.
- Agol, Ian (2013). With an appendix by Ian Agol, Daniel Groves, and Jason Manning. "The virtual Haken Conjecture". Doc. Math. 18: 1045–1087. MR 3104553.
- Haglund, Frédéric; Wise, Daniel (2012). "A combination theorem for special cube complexes". Annals of Mathematics. 176 (3): 1427–1482. doi:10.4007/annals.2012.176.3.2. MR 2979855.
- Kahn, Jeremy; Markovic, Vladimir (2012). "Immersing almost geodesic surfaces in a closed hyperbolic three manifold". Annals of Mathematics. 175 (3): 1127–1190. arXiv:0910.5501. doi:10.4007/annals.2012.175.3.4. MR 2912704.
- Kahn, Jeremy; Markovic, Vladimir (2012). "Counting essential surfaces in a closed hyperbolic three-manifold". Geometry & Topology. 16 (1): 601–624. arXiv:1012.2828. doi:10.2140/gt.2012.16.601. MR 2916295.
- Daniel T. Wise, The structure of groups with a quasiconvex hierarchy, https://docs.google.com/file/d/0B45cNx80t5-2NTU0ZTdhMmItZTIxOS00ZGUyLWE0YzItNTEyYWFiMjczZmIz/edit?pli=1
- Bergeron, Nicolas; Wise, Daniel T. (2012). "A boundary criterion for cubulation". American Journal of Mathematics. 134 (3): 843–859. arXiv:0908.3609. doi:10.1353/ajm.2012.0020. MR 2931226.
References
- Dunfield, Nathan; Thurston, William (2003), "The virtual Haken conjecture: experiments and examples", Geometry and Topology, 7: 399–441, arXiv:math/0209214, doi:10.2140/gt.2003.7.399, MR 1988291.
- Kirby, Robion (1978), "Problems in low dimensional manifold theory.", Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), 7, pp. 273–312, ISBN 9780821867891, MR 0520548.