5-demicubic honeycomb
The 5-demicube honeycomb (or demipenteractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.
Demipenteractic honeycomb | |
---|---|
(No image) | |
Type | Uniform 5-honeycomb |
Family | Alternated hypercubic honeycomb |
Schläfli symbols | h{4,3,3,3,4} h{4,3,3,31,1} ht0,5{4,3,3,3,4} h{4,3,3,4}h{∞} h{4,3,31,1}h{∞} ht0,4{4,3,3,4}h{∞} h{4,3,4}h{∞}h{∞} h{4,31,1}h{∞}h{∞} |
Coxeter diagrams |
=
|
Facets | {3,3,3,4} h{4,3,3,3} |
Vertex figure | t1{3,3,3,4} |
Coxeter group | [4,3,3,31,1] [31,1,3,31,1] |
It is the first tessellation in the demihypercube honeycomb family which, with all the next ones, is not regular, being composed of two different types of uniform facets. The 5-cubes become alternated into 5-demicubes h{4,3,3,3} and the alternated vertices create 5-orthoplex {3,3,3,4} facets.
D5 lattice
The vertex arrangement of the 5-demicubic honeycomb is the D5 lattice which is the densest known sphere packing in 5 dimensions.[1] The 40 vertices of the rectified 5-orthoplex vertex figure of the 5-demicubic honeycomb reflect the kissing number 40 of this lattice.[2]
The D+
5 packing (also called D2
5) can be constructed by the union of two D5 lattices. The analogous packings form lattices only in even dimensions. The kissing number is 24=16 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8).[3]
- ∪
The D*
5[4] lattice (also called D4
5 and C2
5) can be constructed by the union of all four 5-demicubic lattices:[5] It is also the 5-dimensional body centered cubic, the union of two 5-cube honeycombs in dual positions.
- ∪ ∪ ∪ = ∪ .
The kissing number of the D*
5 lattice is 10 (2n for n≥5) and its Voronoi tessellation is a tritruncated 5-cubic honeycomb, , containing all bitruncated 5-orthoplex, Voronoi cells.[6]
Symmetry constructions
There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 32 5-demicube facets around each vertex.
Coxeter group | Schläfli symbol | Coxeter-Dynkin diagram | Vertex figure Symmetry |
Facets/verf |
---|---|---|---|---|
= [31,1,3,3,4] = [1+,4,3,3,4] | h{4,3,3,3,4} | = | [3,3,3,4] |
32: 5-demicube 10: 5-orthoplex |
= [31,1,3,31,1] = [1+,4,3,31,1] | h{4,3,3,31,1} | = | [32,1,1] |
16+16: 5-demicube 10: 5-orthoplex |
2×½ = [[(4,3,3,3,4,2<sup>+</sup>)]] | ht0,5{4,3,3,3,4} | 16+8+8: 5-demicube 10: 5-orthoplex |
Related honeycombs
This honeycomb is one of 20 uniform honeycombs constructed by the Coxeter group, all but 3 repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 20 permutations are listed with its highest extended symmetry relation:
D5 honeycombs | |||
---|---|---|---|
Extended symmetry |
Extended diagram |
Extended group |
Honeycombs |
[31,1,3,31,1] | |||
<[31,1,3,31,1]> ↔ [31,1,3,3,4] |
↔ |
×21 = | , , ,
, , , |
[[31,1,3,31,1]] | ×22 | , | |
<2[31,1,3,31,1]> ↔ [4,3,3,3,4] |
↔ |
×41 = | , , , , , |
[<2[31,1,3,31,1]>] ↔ [[4,3,3,3,4]] |
↔ |
×8 = ×2 | , , |
See also
Regular and uniform honeycombs in 5-space:
References
- http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D5.html
- Sphere packings, lattices, and groups, by John Horton Conway, Neil James Alexander Sloane, Eiichi Bannai
- Conway (1998), p. 119
- http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/Ds5.html
- Conway (1998), p. 120
- Conway (1998), p. 466
- Coxeter, H.S.M. Regular Polytopes, (3rd edition, 1973), Dover edition, ISBN 0-486-61480-8
- pp. 154–156: Partial truncation or alternation, represented by h prefix: h{4,4}={4,4}; h{4,3,4}={31,1,4}, h{4,3,3,4}={3,3,4,3}, ...
- Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6
- (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
- Conway JH, Sloane NJH (1998). Sphere Packings, Lattices and Groups (3rd ed.). ISBN 0-387-98585-9.
External links
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |