Condensation point

In mathematics, a condensation point p of a subset S of a topological space, is any point p such that every open neighborhood of p contains uncountably many points of S. Thus "condensation point" is synonymous with "-accumulation point".[1]

Examples

  • If S = (0,1) is the open unit interval, a subset of the real numbers, then 0 is a condensation point of S.
  • If S is an uncountable subset of a set X endowed with the indiscrete topology, then any point p of X is a condensation point of X as the only open neighborhood of p is X itself.

References


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.