Gδ space

In mathematics, particularly topology, a Gδ space is a topological space in which closed sets are in a way ‘separated’ from their complements using only countably many open sets. A Gδ space may thus be regarded as a space satisfying a different kind of separation axiom. In fact normal Gδ spaces are referred to as perfectly normal spaces, and satisfy the strongest of separation axioms.

Gδ spaces are also called perfect spaces.[1] The term perfect is also used, incompatibly, to refer to a space with no isolated points; see Perfect set.

Definition

A countable intersection of open sets in a topological space is called a Gδ set. Trivially, every open set is a Gδ set. Dually, a countable union of closed sets is called an Fσ set. Trivially, every closed set is an Fσ set.

A topological space X is called a Gδ space[2] if every closed subset of X is a Gδ set. Dually and equivalently, a Gδ space is a space in which every open set is an Fσ set.

Properties and examples

Notes

References

  • Engelking, Ryszard (1989). General Topology. Heldermann Verlag, Berlin. ISBN 3-88538-006-4.
  • Steen, Lynn Arthur; Seebach, J. Arthur Jr. (1995) [1978], Counterexamples in Topology (Dover Publications reprint of 1978 ed.), Berlin, New York: Springer-Verlag, ISBN 978-0-486-68735-3, MR 0507446
  • Roy A. Johnson (1970). "A Compact Non-Metrizable Space Such That Every Closed Subset is a G-Delta". The American Mathematical Monthly, Vol. 77, No. 2, pp. 172–176. on JStor
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.