Glaser coupling

The Glaser coupling is a type of coupling reaction. It is by far the oldest acetylenic coupling and is based on cuprous salts like copper(I) chloride or copper(I) bromide and an additional oxidant like oxygen. The base in its original scope is ammonia. The solvent is water or an alcohol.[1][2] The reaction was first reported by Carl Andreas Glaser in 1869.

Glaser coupling
Named after Carl Andreas Glaser
Reaction type Coupling reaction
Identifiers
Organic Chemistry Portal glaser-coupling
RSC ontology ID RXNO:0000098

Modifications

Eglinton reaction

Eglinton reaction
Named after Geoffrey Eglinton
Reaction type Coupling reaction
Identifiers
Organic Chemistry Portal eglinton-reaction
RSC ontology ID RXNO:0000099

In the related Eglinton reaction[3] two terminal alkynes are coupled directly by a copper(II) salt such as cupric acetate.

The Eglinton Reaction[4] has been used to synthesize a number of fungal antibiotics and is important for carbon-carbon bond formation via the oxidative coupling of alkynes, as illustrated in this highly simplified scheme:[5]

This procedure was used in the synthesis of cyclooctadecanonaene.[6] Another example is the synthesis of diphenyldiacetylene from phenylacetylene.[7]

Hay coupling

The Hay coupling (1962) is another version of the Glaser coupling with the TMEDA complex of copper(I) chloride.[8] An example is the coupling of trimethylsilylacetylene.[9]

Scope

In 1882 Adolf von Baeyer used the method to synthesise indigo dye from 3-(2-nitrophenyl)propiolic acid.[10][11]

Shortly afterwards, Baeyer reported a different route to indigo, now known as the Baeyer–Drewson indigo synthesis.

See also

References

  1. Glaser, Carl (1870). "Untersuchungen über einige Derivate der Zimmtsäure" [Studies on some derivatives of cinnamic acid]. Annalen der Chemie und Pharmacie (in German). 154 (2): 137–171. doi:10.1002/jlac.18701540202.
  2. Glaser, C. (1869). "Beiträge zur Kenntniss des Acetenylbenzols". Berichte der Deutschen Chemischen Gesellschaft. 2 (1): 422–424. doi:10.1002/cber.186900201183.
  3. G. Eglinton and A. R. Galbraith, J. Chem. Soc., 889 (1959).
  4. Eglinton, G.; Galbraith, A. R.; Chem. Ind. 1956, 737.
  5. Eglinton, G.; McRae, W. Adv. Org. Chem. 1963, 4, 225.
  6. K. Stöckel and F. Sondheimer (1974). "[18]Annulene". Organic Syntheses. 54: 1. doi:10.15227/orgsyn.054.0001.
  7. I. D. Campbell and G. Eglinton (1973). "Diphenyldiacetylene". Organic Syntheses.; Collective Volume, 5, p. 517
  8. Hay, Allan S. (1962). "Oxidative Coupling of Acetylenes. II". The Journal of Organic Chemistry. 27 (9): 3320–3321. doi:10.1021/jo01056a511.
  9. Graham E. Jones, David A. Kendrick, and Andrew B. Holmes (1993). "1,4-Bis(trimethylsilyl)buta-1,3-diyne". Organic Syntheses.CS1 maint: multiple names: authors list (link); Collective Volume, 8, p. 63
  10. Baeyer, Adolf (1882). "Ueber die Verbindungen der Indigogruppe". Berichte der Deutschen Chemischen Gesellschaft. 15 (1): 50–56. doi:10.1002/cber.18820150116.
  11. Johansson Seechurn, Carin C. C.; Kitching, Matthew O.; Colacot, Thomas J.; Snieckus, Victor (21 May 2012). "Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize". Angewandte Chemie International Edition. 51 (21): 5062–5085. doi:10.1002/anie.201107017. PMID 22573393.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.