Helmut Wielandt
Helmut Wielandt (19 December 1910 Niedereggenen, Lörrach, Germany – 14 February 2001) was a German mathematician who worked on permutation groups.
He gave a plenary lecture Entwicklungslinien in der Strukturtheorie der endlichen Gruppen (Lines of Development in the Structure Theory of Finite Groups) at the ICM in 1958 at Edinburgh[1] and was an Invited Speaker with talk Bedingungen für die Konjugiertheit von Untergruppen endlicher Gruppen (Conditions for the Conjugacy of Finite Groups) at the ICM in 1962 in Stockholm.
See also
Publications
- Wielandt, Helmut (1964), Finite permutation groups, Boston, MA: Academic Press, MR 0183775
- Wielandt, Helmut (1994), Huppert, Bertram; Schneider, Hans (eds.), Mathematische Werke/Mathematical works. Vol. 1. Group theory, Berlin: Walter de Gruyter & Co., ISBN 978-3-11-012452-1, MR 1272467
- Wielandt, Helmut (1996), Huppert, Bertram; Schneider, Hans (eds.), Mathematische Werke/Mathematical works. Vol. 2. Linear algebra and analysis, Berlin: Walter de Gruyter & Co., ISBN 978-3-11-012453-8, MR 1430098
Among his work in Algebra is an elegant proof of the Sylow Theorems (replacing an older cumbersome proof involving double cosets) that is in the standard textbooks on Abstract Algebra, i.e. Group Theory.
References
- Wielandt, H. "Entwicklungslinien in der Strukturtheorie der endlichen Gruppen." Archived 2013-12-28 at the Wayback Machine In Proc. Intern. Congress Math., Edinburgh, pp. 268-278. 1958.
- Deutsch, E.; Hadeler, K. P.; Laffey, Thomas J. (1985), "Helmut Wielandt", Linear Algebra and its Applications, 71: 1–8, doi:10.1016/0024-3795(85)90228-9, ISSN 0024-3795, MR 0813026
- Huppert, Bertram (2001), "Nachruf auf Professor Dr. Dr. hc. Helmut Wielandt", Jahresbericht der Deutschen Mathematiker-Vereinigung, 103 (3): 74–78, ISSN 0012-0456
- O'Connor, John J.; Robertson, Edmund F., "Helmut Wielandt", MacTutor History of Mathematics archive, University of St Andrews.
External links
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.