Heptagonal bipyramid

The heptagonal bipyramid is one of the infinite set of bipyramids, dual to the infinite prisms. If an heptagonal bipyramid is to be face-transitive, all faces must be isosceles triangles. The resulting solid has 14 triangular faces, 9 vertices and 21 edges.[1][2]

Heptagonal bipyramid
Typebipyramid
Faces14 triangles
Edges21
Vertices9
Schläfli symbol{ } + {7}
Coxeter diagram
Symmetry groupD7h, [7,2], (*227), order 28
Rotation groupD7, [7,2]+, (227), order 14
Dual polyhedronheptagonal prism
Face configurationV4.4.7
Propertiesconvex, face-transitive
"Regular" right (symmetric) n-gonal bipyramids:
Name Digonal bipyramid Triangular bipyramid (J12) Square bipyramid (O) Pentagonal bipyramid (J13) Hexagonal bipyramid Heptagonal bipyramid Octagonal bipyramid Enneagonal bipyramid Decagonal bipyramid ... Apeirogonal bipyramid
Polyhedron image ...
Spherical tiling image Plane tiling image
Face configuration V2.4.4 V3.4.4 V4.4.4 V5.4.4 V6.4.4 V7.4.4 V8.4.4 V9.4.4 V10.4.4 ... V∞.4.4
Coxeter diagram ...

References

  1. Heptagonal Dipyramid dmccooey.com [2014-6-23]
  2. Pugh, Anthony (1976), Polyhedra: A Visual Approach, University of California Press, pp. 21, 27, 62, ISBN 9780520030565.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.