Immunoelectrophoresis

Immunoelectrophoresis is a general name for a number of biochemical methods for separation and characterization of proteins based on electrophoresis and reaction with antibodies. All variants of immunoelectrophoresis require immunoglobulins, also known as antibodies, reacting with the proteins to be separated or characterized. The methods were developed and used extensively during the second half of the 20th century. In somewhat chronological order: Immunoelectrophoretic analysis (one-dimensional immunoelectrophoresis ad modum Grabar), crossed immunoelectrophoresis (two-dimensional quantitative immunoelectrophoresis ad modum Clarke and Freeman or ad modum Laurell), rocket-immunoelectrophoresis (one-dimensional quantitative immunoelectrophoresis ad modum Laurell), fused rocket immunoelectrophoresis ad modum Svendsen and Harboe, affinity immunoelectrophoresis ad modum Bøg-Hansen.

Crossed immunoelectrophoresis of 2 microLitre of normal human serum. The electrophoresis was performed in thin layers of agarose, the pictured gel is about 7x7 cm. The lower part is the first dimension gel without antibodies, where the serum was applied into the slot at the lower left. The upper part is the second dimension gel with Dako antibodies against human serum proteins. More than 50 major serum proteins can be named.
Fused rocket immunoelectrophoresis of an affinity chromatographic separation of human serum proteins on con A. A 15 microlitre sample from each fraction is applied (starting from left) and let to diffuse about one hour, then electrophorsis was performed over night. Peak "a" is unretained, peak "b" is retained and eluted with methyl-mannose, the arrow indicates som slightly retained proteins.

Method

Agarose as 1% gel slabs of about 1 mm thickness buffered at high pH (around 8.6) is traditionally preferred for the electrophoresis as well as the reaction with antibodies. The agarose was chosen as the gel matrix because it has large pores allowing free passage and separation of proteins, but provides an anchor for the immunoprecipitates of protein and specific antibodies. The high pH was chosen because antibodies are practically immobile at high pH. An electrophoresis equipment with a horizontal cooling plate was normally recommended for the electrophoresis.

Immunoprecipitates may be seen in the wet agarose gel, but are stained with protein stains like Coomassie Brilliant Blue in the dried gel. In contrast to SDS-gel electrophoresis, the electrophoresis in agarose allows native conditions, preserving the native structure and activities of the proteins under investigation, therefore immunoelectrophoresis allows characterization of enzyme activities and ligand binding etc. in addition to electrophoretic separation.

The immunoelectrophoretic analysis ad modum Grabar is the classical method of immunoelectrophoresis. Proteins are separated by electrophoresis, then antibodies are applied in a trough next to the separated proteins and immunoprecipitates are formed after a period of diffusion of the separated proteins and antibodies against each other. The introduction of the immunoelectrophoretic analysis gave a great boost to protein chemistry, some of the very first results were the resolution of proteins in biological fluids and biological extracts. Among the important observations made were the great number of different proteins in serum, the existence of several immunoglobulin classes and their electrophoretic heterogeneity.

Plasmodium Glutamate dehydrogenase (pGluDH) separated by Counterimmunoelectrophoresis[1]

Crossed immunoelectrophoresis is also called two-dimensional quantitative immunoelectrophoresis ad modum Clarke and Freeman or ad modum Laurell. In this method the proteins are first separated during the first dimension electrophoresis, then instead of the diffusion towards the antibodies, the proteins are electrophoresed into an antibody-containing gel in the second dimension. Immunoprecipitation will take place during the second dimension electrophorsis and the immunoprecipitates have a characteristic bell-shape, each precipitate representing one antigen, the position of the precipitate being dependent on the amount of protein as well as the amount of specific antibody in the gel, so relative quantification can be performed. The sensitivity and resolving power of crossed immunoelectrophoresis is than that of the classical immunoelectrophoretic analysis and there are multiple variations of the technique useful for various purposes. Crossed immunoelectrophoresis has been used for studies of proteins in biological fluids, particularly human serum, and biological extracts.

Rocket immunoelectrophoresis is one-dimensional quantitative immunoelectrophoresis. The method has been used for quantitation of human serum proteins before automated methods became available.

Fused rocket immunoelectrophoresis is a modification of one-dimensional quantitative immunoelectrophorsis used for detailed measurement of proteins in fractions from protein separation experiments.

Affinity immunoelectrophoresis is based on changes in the electrophoretic pattern of proteins through specific interaction or complex formation with other macromolecules or ligands. Affinity immunoelectrophoresis has been used for estimation of binding constants, as for instance with lectins or for characterization of proteins with specific features like glycan content or ligand binding. Some variants of affinity immunoelectrophoresis are similar to affinity chromatography by use of immobilized ligands.

The open structure of the immunoprecipitate in the agarose gel will allow additional binding of radioactively labeled antibodies to reveal specific proteins. This variation has been used for identification of allergens through reaction with IgE.

Two factors determine that immunoelectrophoretic methods are not widely used. First they are rather work intensive and require some manual expertise. Second they require rather large amounts of polyclonal antibodies. Today gel electrophoresis followed by electroblotting is the preferred method for protein characterization because its ease of operation, its high sensitivity, and its low requirement for specific antibodies. In addition proteins are separated by gel electrophoresis on the basis of their apparent molecular weight, which is not accomplished by immunoelectrophoresis, but nevertheless immunoelectrophoretic methods are still useful when non-reducing conditions are needed.

References

  1. Ling IT.; Cooksley S.; Bates PA.; Hempelmann E.; Wilson RJM. (1986). "Antibodies to the glutamate dehydrogenase of Plasmodium falciparum" (PDF). Parasitology. 92 (2): 313–324. doi:10.1017/S0031182000064088. PMID 3086819. S2CID 16953840.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.