Mitoferrin-1

Mitoferrin-1 (Mfrn1) is a 38 kDa protein[5] that is encoded by the SLC25A37 gene in humans.[6][7] It is a member of the Mitochondrial carrier (MC) Superfamily, however, its metal cargo makes it distinct from other members of this family. Mfrn1 plays a key role in mitochondrial iron homeostasis as an iron transporter, importing ferrous iron from the intermembrane space of the mitochondria to the mitochondrial matrix for the biosynthesis of heme groups and Fe-S clusters.[8] This process is tightly regulated, given the redox potential of Mitoferrin's iron cargo. Mfrn1 is paralogous to Mitoferrin-2 (Mfrn2), a 39 kDa protein encoded by the SLC25A28 gene in humans.[5] Mfrn1 is highly expressed in differentiating erythroid cells and in other tissues at low levels, while Mfrn2 is expressed ubiquitously in non-erythroid tissues.[9][5]

SLC25A37
Identifiers
AliasesSLC25A37, MFRN, MFRN1, MSC, MSCP, PRO1278, PRO1584, PRO2217, HT015, solute carrier family 25 member 37
External IDsOMIM: 610387 MGI: 1914962 HomoloGene: 74739 GeneCards: SLC25A37
Gene location (Human)
Chr.Chromosome 8 (human)[1]
Band8p21.2Start23,528,956 bp[1]
End23,575,463 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

51312

67712

Ensembl

ENSG00000147454

ENSMUSG00000034248

UniProt

Q9NYZ2

Q920G8

RefSeq (mRNA)

NM_016612
NM_001317812
NM_001317813
NM_001317814

NM_026331
NM_030054

RefSeq (protein)

NP_001304741
NP_001304742
NP_001304743
NP_057696

NP_080607

Location (UCSC)Chr 8: 23.53 – 23.58 MbChr 14: 69.24 – 69.29 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

The molecular details of iron trafficking for heme and Iron-sulfur cluster synthesis are still unclear, however, Mitoferrin-1 has been shown to form oligomeric complexes with the ATP-binding cassette transporter ABCB10 and Ferrochelatase (or protoporphyrin ferrochelatase).[10] Furthermore, ABC10 binding enhances the stability and functionality of Mfrn1, suggesting that transcriptional and post-translational mechanisms further regulate cellular and mitochondrial iron homeostasis.[11] Recombinant Mfrn1 in vitro has micromolar affinity for the following first-row transition metals: iron (II), manganese (II), cobalt (II), and nickel (II).[12] Mfrn1 iron transport was reconstituted in proteoliposomes, where the protein was also able to transport manganese, cobalt, copper, and zinc, yet it discriminated against nickel, despite the aforementioned affinity.[12] Notably, Mfrn1 appears to transport free iron ions as opposed to any sort of chelated iron complex.[12] Additionally, Mfrn1 selects against divalent alkali ions.[12] Mfrn1 and its paralog Mfrn2 have complementary functionalities, though the precise relationship is still uncertain. For example, heme production is restored by expression of Mfrn2 in cells silenced for Mfrn1 and by ectopic expression of Mfrn1 in nonerythroid cells silenced for Mfrn2, where Mfrn1 accumulates due to an increased protein half-life.[13] In contrast, ectopic expression of Mfrn2 failed to restore heme product in erythroid cells silenced for Mfrn1 because Mfrn2 was unable to accumulate in mitochondria.[13]

Clinical Significance

Mitoferrin-1 has been implicated in diseases associated with defective iron homeostasis, resulting in iron or porphyrin imbalances.[14] Abnormal Mfrn1 expression, for example, may contribute to Erythropoietic protoporphyria,[15] a porphyrin disease linked to mutations in the Ferrochelatase enzyme.[15] Selective deletion of Mfrn1 in adult mice led to severe anemia rather than porphyria[16] likely because Iron-responsive element-binding protein (specifically IRE-BP1) transcriptionally regulates porphyrin biogenesis, inhibiting it in the absence of Mfrn1.[9] Mfrn1 has also been implicated in depression[17] and Myelin Displastic syndrome.[18]

Animal Studies

The importance of Mitoferrins in heme and Fe-S cluster biosynthesis was first discovered in the anemic zebrafish mutant frascati.[6] Studies in mice revealed that total deletion of Mfrn1 resulted in embryonic lethality, while selective deletion in adults caused severe anemia as stated above.[16] Expression mouse Mfrn1 rescued knockout zebrafish, indicating that the gene is highly evolutionarily conserved.[14] The transcription factor, GATA-1, directly regulates Mfrn1 expression in zebrafish via distal cis-regulatory Mfrn1 elements.[19] In C. elegans, reduced Mfrn1 expression results in abnormal development and increased lifespans of roughly 50-80%.[20]

See also

References

  1. GRCh38: Ensembl release 89: ENSG00000147454 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000034248 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hung HI, Schwartz JM, Maldonado EN, Lemasters JJ, Nieminen AL (January 2013). "Mitoferrin-2-dependent mitochondrial iron uptake sensitizes human head and neck squamous carcinoma cells to photodynamic therapy". The Journal of Biological Chemistry. 288 (1): 677–86. doi:10.1074/jbc.M112.422667. PMC 3537066. PMID 23135267.
  6. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (March 2006). "Mitoferrin is essential for erythroid iron assimilation". Nature. 440 (7080): 96–100. doi:10.1038/nature04512. PMID 16511496. S2CID 4429335.
  7. "Entrez Gene: SLC25A37 solute carrier family 25, member 37".
  8. Hentze MW, Muckenthaler MU, Galy B, Camaschella C (July 2010). "Two to tango: regulation of Mammalian iron metabolism". Cell. 142 (1): 24–38. doi:10.1016/j.cell.2010.06.028. PMID 20603012. S2CID 23971474.
  9. Chung J, Anderson SA, Gwynn B, Deck KM, Chen MJ, Langer NB, Shaw GC, Huston NC, Boyer LF, Datta S, Paradkar PN, Li L, Wei Z, Lambert AJ, Sahr K, Wittig JG, Chen W, Lu W, Galy B, Schlaeger TM, Hentze MW, Ward DM, Kaplan J, Eisenstein RS, Peters LL, Paw BH (March 2014). "Iron regulatory protein-1 protects against mitoferrin-1-deficient porphyria". The Journal of Biological Chemistry. 289 (11): 7835–43. doi:10.1074/jbc.M114.547778. PMC 4022844. PMID 24509859.
  10. Chen W, Dailey HA, Paw BH (July 2010). "Ferrochelatase forms an oligomeric complex with mitoferrin-1 and Abcb10 for erythroid heme biosynthesis". Blood. 116 (4): 628–30. doi:10.1182/blood-2009-12-259614. PMC 3324294. PMID 20427704.
  11. Chen W, Paradkar PN, Li L, Pierce EL, Langer NB, Takahashi-Makise N, Hyde BB, Shirihai OS, Ward DM, Kaplan J, Paw BH (September 2009). "Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria". Proceedings of the National Academy of Sciences of the United States of America. 106 (38): 16263–8. doi:10.1073/pnas.0904519106. PMC 2752562. PMID 19805291.
  12. Christenson ET, Gallegos AS, Banerjee A (March 2018). "In vitro reconstitution, functional dissection, and mutational analysis of metal ion transport by mitoferrin-1". The Journal of Biological Chemistry. 293 (10): 3819–3828. doi:10.1074/jbc.M117.817478. PMC 5846140. PMID 29305420.
  13. Paradkar PN, Zumbrennen KB, Paw BH, Ward DM, Kaplan J (February 2009). "Regulation of mitochondrial iron import through differential turnover of mitoferrin 1 and mitoferrin 2". Molecular and Cellular Biology. 29 (4): 1007–16. doi:10.1128/MCB.01685-08. PMC 2643804. PMID 19075006.
  14. Shaw GC, Cope JJ, Li L, Corson K, Hersey C, Ackermann GE, Gwynn B, Lambert AJ, Wingert RA, Traver D, Trede NS, Barut BA, Zhou Y, Minet E, Donovan A, Brownlie A, Balzan R, Weiss MJ, Peters LL, Kaplan J, Zon LI, Paw BH (March 2006). "Mitoferrin is essential for erythroid iron assimilation". Nature. 440 (7080): 96–100. doi:10.1038/nature04512. PMID 16511496. S2CID 4429335.
  15. Wang Y, Langer NB, Shaw GC, Yang G, Li L, Kaplan J, Paw BH, Bloomer JR (July 2011). "Abnormal mitoferrin-1 expression in patients with erythropoietic protoporphyria". Experimental Hematology. 39 (7): 784–94. doi:10.1016/j.exphem.2011.05.003. PMC 3143264. PMID 21627978.
  16. Troadec MB, Warner D, Wallace J, Thomas K, Spangrude GJ, Phillips J, Khalimonchuk O, Paw BH, Ward DM, Kaplan J (May 2011). "Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria". Blood. 117 (20): 5494–502. doi:10.1182/blood-2010-11-319483. PMC 3109720. PMID 21310927.
  17. Huo YX, Huang L, Zhang DF, Yao YG, Fang YR, Zhang C, Luo XJ (December 2016). "Identification of SLC25A37 as a major depressive disorder risk gene". Journal of Psychiatric Research. 83: 168–175. doi:10.1016/j.jpsychires.2016.09.011. PMID 27643475.
  18. Visconte V, Avishai N, Mahfouz R, Tabarroki A, Cowen J, Sharghi-Moshtaghin R, Hitomi M, Rogers HJ, Hasrouni E, Phillips J, Sekeres MA, Heuer AH, Saunthararajah Y, Barnard J, Tiu RV (January 2015). "Distinct iron architecture in SF3B1-mutant myelodysplastic syndrome patients is linked to an SLC25A37 splice variant with a retained intron". Leukemia. 29 (1): 188–95. doi:10.1038/leu.2014.170. PMID 24854990. S2CID 10475563.
  19. Amigo JD, Yu M, Troadec MB, Gwynn B, Cooney JD, Lambert AJ, Chi NC, Weiss MJ, Peters LL, Kaplan J, Cantor AB, Paw BH (April 2011). "Identification of distal cis-regulatory elements at mouse mitoferrin loci using zebrafish transgenesis". Molecular and Cellular Biology. 31 (7): 1344–56. doi:10.1128/MCB.01010-10. PMC 3135305. PMID 21248200.
  20. Ren Y, Yang S, Tan G, Ye W, Liu D, Qian X, Ding Z, Zhong Y, Zhang J, Jiang D, Zhao Y, Lu J (January 11, 2018). "Reduction of mitoferrin results in abnormal development and extended lifespan in Caenorhabditis elegans". PLOS ONE. 7 (1): e29666. doi:10.1371/journal.pone.0029666. PMC 3256167. PMID 22253756.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.