2021 in mammal paleontology

This article records new taxa of fossil mammals of every kind are scheduled to be described during the year 2021, as well as other significant discoveries and events related to paleontology of mammals that are scheduled to occur in the year 2021.

List of years in mammal paleontology
In paleontology
2018
2019
2020
2021
2022
2023
2024
In science
2018
2019
2020
2021
2022
2023
2024

General research

  • A study aiming to determine whether changes in geographic range that could result from human impacts have altered the climatic niches of 46 species of mammals within the contiguous United States, based on data from the fossil record, is published by Pineda-Munoz et al. (2021).[1]

Metatherians

  • A study on the mobility of the elbow in Palorchestes azael, and on its implications for the knowledge of the likely posture of this marsupial, is published by Richards et al. (2021).[2]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Caenolestoides[3]

Gen. et sp. nov

Valid

Abello, Martin & Cardoso

Early Miocene

 Argentina

A shrew opossum. Genus includes new species C. miocaenicus.

Gaimanlestes[3]

Gen. et sp. nov

Valid

Abello, Martin & Cardoso

Early Miocene

 Argentina

A shrew opossum. Genus includes new species G. pascuali.

Stilotherium parvum[3]

Sp. nov

Valid

Abello, Martin & Cardoso

Early Miocene

 Argentina

A shrew opossum.

Eutherians

  • A study on factors affecting the accuracy of mitogenomic phylogeny reconstruction for placental mammals is published by Phillips & Shazwani Zakaria (2021), who also study the phylogenetic relationships of glyptodonts, Macrauchenia and sabre-toothed and scimitar cats among placental mammals on the basis of data from mitochondrial DNA.[4]

Xenarthrans

  • A study on the anatomy of the bony labyrinth of the glyptodonts Glyptodon, Doedicurus, Panochthus and Pseudoplohophorus, as well as the pampathere Holmesina, is published by Tambusso et al. (2021), who evaluate the implications of their findings for the knowledge of the phylogenetic placement of glyptodonts and pampatheres.[5]
  • The first record of Meizonyx salvadorensis from the late Pleistocene of Mexico is reported by McDonald et al. (2021), who study the phylogenetic relationships of this species, and discuss the palaeobiogeographical and palaeoecological implications of this finding.[6]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Afrotherians

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Bats

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Notoungulates

  • A study on the shape and size of molars in nine species of Protypotherium, aiming to determine the impact of climate change in South America during Miocene on the evolution of this genus, is published by Scarano, Vera & Reguero (2021).[8]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Odd-toed ungulates

  • A study on the morphology of the central forelimb metapodial joint surface in extant and extinct members of Equoidea, aiming to determine potential drivers of modifications of the shape of metapodial–phalangeal joint in horse limbs throughout their evolutionary history, is published by MacLaren (2021).[9]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Even-toed ungulates

  • New fossil material of Paracamelus aguirrei is described from the Miocene locality Venta del Moro (Spain) by Caballero et al. (2021), who interpret P. aguirrei as a large camelid, comparable in size to Megacamelus merriami, Paracamelus gigas and Camelus knoblochi.[10]
  • A study aiming to determine whether the "law of constant extinction" proposed by Leigh Van Valen (stating that long and short‐lived taxa have equal chances of going extinct) applies to the ruminants, taking the inherent biases of the fossil record into account, is published by Januario & Quental (2021).[11]
  • Review of the fossil material attributed to Amphimoschus, and a reassessment of the validity of the species assigned to this genus, is published by Mennecart et al. (2021).[12]
  • A study comparing the ontogenetic trends in the limb bones of Pleistocene pronghorns Capromeryx minor and Capromeryx arizonensis, aiming to determine how ontogenetic slopes compare to the slope of dwarfing, is published by Prothero et al. (2021).[13]
  • Redescription and revision of the taxonomy of cervid fossils from the João Cativo and Lage Grande sites in the Brazilian Intertropical Region is published by Rotti et al. (2021), who identify fossils of members of the genus Morenelaphus from these sites, and evaluate the implications of the presence of giant deers for reconstructions of the climate and environment of the Brazilian Intertropical Region during the Pleistocene.[14]
  • A study on the ecomorphology of Rusingoryx atopocranion, and on its implications for reconstructions of the environment of the Lake Victoria Basin during the late Pleistocene, is published by Kovarovic et al. (2021).[15]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Gangraia[16]

Gen. et sp. nov

Valid

Kostopoulos et al.

Late Miocene

Tüglu Formation

 Turkey

A member of the family Bovidae belonging to the subfamily Antilopinae. The type species is G. anatolica.

Cetaceans

  • A study on the effects of incorporation of fossil taxa for inferences about phylogenetic relationships and evolutionary history of cetaceans is published by Lloyd & Slater (2021).[17]
  • A tooth a possible member of the family Remingtonocetidae, potentially extending the range of this family across the Atlantic to eastern North America, is described from the Eocene of North Carolina by Uhen & Peredo (2021).[18]
  • Redescription of the Eocene cetacean "Platyosphys einori" is published by Davydenko et al. (2021), who interpret this taxon as a basilosaurid of uncertain phylogenetic placement, and report that it shows adaptations to life in water typical for modern whales but unique for the Eocene cetaceans.[19]
  • Two partial skulls of members of the family Eurhinodelphinidae are described from the Miocene (Burdigalian) Chilcatay Formation (Pisco Basin, Peru) by Lambert et al. (2021), representing the first diagnostic remains attributable to this family reported from the Southern Hemisphere and the Pacific Ocean.[20]
  • Redescription and revision of the taxonomic status of Preaulophyseter gualichensis is published by Paolucci et al. (2021).[21]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Kogia danomurai[22]

Sp. nov

Valid

Benites‐Palomino et al.

Late Miocene

Pisco Formation

 Peru

A species of Kogia.

Carnivorans

  • A study on the evolutionary history of dire wolves, based on data from five genomes sequenced from sub-fossil remains, is published by Perri et al. (2021), who interpret their findings as indicating that dire wolves were members of a highly divergent lineage that split from living canids around 5.7 million years ago, and recommend transferring them to the separate genus Aenocyon.[23]
  • Lahtinen et al. (2021) argue that the differences between dietary constraints of wolves and humans enabled dog domestication in harsh environments across northern Eurasia in the Late Pleistocene, as the prey species of wolves have protein ratios over the limit that humans can consume, which resulted in Upper Paleolithic hunter-gatherers having excess protein from their prey available to feed to captured/pet wolves.[24]
  • Perri et al. (2021) compare population genetic results of humans and dogs from Siberia, Beringia and North America, and interpret their findings as indicating that dogs were domesticated in Siberia by ∼23,000 years ago, and subsequently accompanied the first people into the Americas.[25]
  • Three fragments of a skull of Pachycrocuta brevirostris are described from the Jinyuan Cave (Dalian, China) by Liu et al. (2021), who interpret this specimen as the largest skull of a member of this species reported so far, and evaluate its implications for the knowledge of the evolutionary history of this species.[26]
  • A study on the evolutionary history of the genus Crocuta, based on data from near-complete mitochondrial genomes sequenced from two Late Pleistocene cave hyena skulls from northeastern China, is published by Hu et al. (2021).[27]
  • An association of two subadult and one adult specimen of Smilodon fatalis is reported from the Pleistocene Tablazo Formation (Ecuador) by Reynolds, Seymour & Evans (2021), who interpret the subadult specimens as likely to be siblings, and evaluate the implications of this finding for the knowledge of the life history of S. fatalis.[28]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Rodents

  • A study aiming to determine the ecological adaptation that allowed Trogontherium cuvieri to persist in northeast China in the Pleistocene, based on data from Early to Middle Pleistocene specimens from the Jinyuan Cave, is published by Yang et al. (2021).[29]
NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Daxneria[30]

Gen. et sp. nov

In press

Van de Weerd, de Bruijn & Wessels

Late Oligocene

 Turkey

A member of Hystricognathi belonging to the subfamily Baluchimyinae. The type species is D. fragilis.

Eucricetodon oculatus[30]

Sp. nov

In press

Van de Weerd, de Bruijn & Wessels

Late Oligocene

 Turkey

A member of the family Muridae belonging to the subfamily Eucricetodontinae.

Eucricetodon ruber[30]

Sp. nov

In press

Van de Weerd, de Bruijn & Wessels

Late Oligocene

 Turkey

A member of the family Muridae belonging to the subfamily Eucricetodontinae.

Primates

  • A study on the changes in teeth and dentary shape through time in notharctines from the Eocene Willwood Formation (Wyoming, United States) is published by O'Leary (2021).[31]
  • DeMiguel et al. (2021) present a reconstruction of the local climate and environments through the densely sampled primate-bearing sequence of Abocador de Can Mata (Spain), and attempt to determine whether turnovers in Miocene primate assemblages from this sequence were correlated with environmental changes.[32]
  • A study on the morphology of the semicircular canals of the bony labyrinth of Epipliopithecus vindobonensis, and on its implications for the knowledge of the phylogenetic relationships of this species, is published by Urciuoli et al. (2021).[33]
  • A study on the inner ear morphology and phylogenetic relationships of Hispanopithecus and Rudapithecus is published by Urciuoli et al. (2021).[34]

General paleoanthropology

  • A study on the evolution of the efficiency of thumb opposition in fossil hominins is published by Karakostis et al. (2021).[35]
  • Reconstruction of the environment at Allia Bay locality (Kenya) ca. 3.97 Ma, based on data from bovid fossils, is published by Dumouchel et al. (2021), who evaluate the implications of their findings for the knowledge of the range of environments occupied by Australopithecus anamensis.[36]
  • A study on the speciation patterns in Pleistocene hominins, aiming to determine the phylogeographic patterns underlying the spread and morphological divergence of Pleistocene Homo populations, is published by Parins-Fukuchi (2021).[37]
  • A study on the adaptability of hominins living two million years ago to unstable environments, based on data from the Ewass Oldupa site (Olduvai Gorge, Tanzania), is published by Mercader et al. (2021).[38]
  • A study on the variation of the shape of the occipital and frontal bones in Homo erectus and Homo sapiens, aiming to assesses the hypothesis that similar evolutionary factors related to shared evolutionary history shaped cranial morphology in these species, is published by Baab (2021).[39]
  • Dusseldorp & Lombard (2021) develop a framework to differentiate the technological niches of co-existing hominin species, and apply this framework to the coexistence of Homo naledi and Homo sapiens during the late Middle Pleistocene in southern Africa.[40]
  • McGrath et al. (2021) describe a method to create high-resolution 3D models of the tooth enamel surface using confocal profilometry, apply it to a sample of 17 Neanderthal and 18 Homo sapiens anterior teeth, and report evidence indicative of faster growth rates of anterior teeth in Neanderthals than in H. sapiens, as well as evidence that ratios of severity of linear enamel hypoplasia are not significantly different in Neanderthal sample and in H. sapiens sample as a whole.[41]
  • Two Late Pleistocene figurative paintings of Celebes warty pigs are reported from Maros-Pangkep (South Sulawesi, Indonesia) by Brumm et al. (2021), who determine the minimum age of one these paintings as at least 45.5 ka, making it likely one of the oldest if not the oldest record of the presence of anatomically modern humans in Wallacea, as well as the earliest known figurative artwork.[42]
  • Scerri et al. (2021) report two new sites in Senegal that date the end of the Middle Stone Age to around 11 ka, representing the youngest record of this cultural phase in Africa reported so far, and indicating that it persisted into the Holocene.[43]

New taxa

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Other eutherians

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

Other mammals

NameNoveltyStatusAuthorsAgeType localityCountryNotesImages

References

  1. Pineda-Munoz, S.; Wang, Y.; Lyons, S. K.; Tóth, A. B.; McGuire, J. L. (2021). "Mammal species occupy different climates following the expansion of human impacts". Proceedings of the National Academy of Sciences of the United States of America. 118 (2): e1922859118. doi:10.1073/pnas.1922859118. PMC 7812786. PMID 33397717.
  2. Richards, H. L.; Bishop, P. J.; Hocking, D. P.; Adams, J. W.; Evans, A. R. (2021). "Low elbow mobility indicates unique forelimb posture and function in a giant extinct marsupial". Journal of Anatomy. in press. doi:10.1111/joa.13389. PMID 33533053.
  3. Abello, M. A.; Martin, G. M.; Cardoso, Y. (2021). "Review of the extinct 'shrew-opossums' (Marsupialia: Caenolestidae), with descriptions of two new genera and three new species from the Early Miocene of southern South America". Zoological Journal of the Linnean Society. Online edition. doi:10.1093/zoolinnean/zlaa165.
  4. Phillips, M. J.; Shazwani Zakaria, S. (2021). "Enhancing mitogenomic phylogeny and resolving the relationships of extinct megafaunal placental mammals". Molecular Phylogenetics and Evolution. in press: Article 107082. doi:10.1016/j.ympev.2021.107082. PMID 33482383.
  5. Tambusso, P. S.; Varela, L.; Góis, F.; Moura, J. F.; Villa, C.; Fariña, R. A. (2021). "The inner ear anatomy of glyptodonts and pampatheres (Xenarthra, Cingulata): Functional and phylogenetic implications". Journal of South American Earth Sciences. in press: Article 103189. doi:10.1016/j.jsames.2021.103189.
  6. McDonald, H. G.; Arroyo-Cabrales, J.; Alarcón-Durán, I.; Espinosa-Martínez, D. V. (2021). "First record of Meizonyx salvadorensis (Mammalia: Xenarthra: Pilosa) from the late Pleistocene of Mexico and its evolutionary implications". Journal of Systematic Palaeontology. 18 (22): 1829–1851. doi:10.1080/14772019.2020.1842816.
  7. Maugoust, J.; Orliac, M. J. (2021). "Endocranial cast anatomy of the extinct hipposiderid bats Palaeophyllophora and Hipposideros (Pseudorhinolophus) (Mammalia: Chiroptera)". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-020-09522-9.
  8. Scarano, A. C.; Vera, B.; Reguero, M. (2021). "Evolutionary trends of Protypotherium (Interatheriidae, Notoungulata) lineage throughout the Miocene of South America". Journal of Mammalian Evolution. in press. doi:10.1007/s10914-020-09534-5.
  9. MacLaren, J. A. (2021). "Biogeography a key influence on distal forelimb variation in horses through the Cenozoic". Proceedings of the Royal Society B: Biological Sciences. 288 (1942): Article ID 20202465. doi:10.1098/rspb.2020.2465. PMID 33434465.
  10. Caballero, Ó.; Montoya, P.; Crespo, V. D.; Morales, J.; Abella, J. (2021). "The autopodial skeleton of Paracamelus aguirrei (Morales 1984) (Tylopoda, Mammalia) from the late Miocene site of Venta del Moro (Valencia, Spain)". Journal of Iberian Geology. in press. doi:10.1007/s41513-020-00144-x.
  11. Januario, M.; Quental, T. B. (2021). "Re‐evaluation of the "law of constant extinction" for ruminants at different taxonomical scales". Evolution. in press. doi:10.1111/evo.14177. PMID 33486771.
  12. Mennecart, B.; Métais, G.; Costeur, L.; Ginsburg, L.; Rössner, G. E. (2021). "Reassessment of the enigmatic ruminant Miocene genus Amphimoschus Bourgeois, 1873 (Mammalia, Artiodactyla, Pecora)". PLoS ONE. 16 (1): e0244661. doi:10.1371/journal.pone.0244661. PMID 33513144.
  13. Prothero, D. R.; Syverson, V. J. P.; Hulbert, R.; de Anda, E. E.; Balassa, D. (2021). "Allometric trends in growth and dwarfing in the dwarf pronghorn Capromeryx: does dwarfing follow the same trends as growth?". New Mexico Museum of Natural History and Science Bulletin. 82: 335–339.
  14. Rotti, A.; Vezzosi, R. I.; Mothé, D.; Avilla, L. S. (2021). "Rising from the ashes: The biggest South American deers (Cetartiodactyla: Cervidae) once roamed Northeast Brazil". Journal of South American Earth Sciences. 108: Article 103154. doi:10.1016/j.jsames.2021.103154.
  15. Kovarovic, K.; Faith, J. T.; Jenkins, K. E.; Tryon, C. A.; Peppe, D. J (2021). "Ecomorphology and ecology of the grassland specialist, Rusingoryx atopocranion (Artiodactyla: Bovidae), from the late Pleistocene of western Kenya". Quaternary Research. in press. doi:10.1017/qua.2020.102.
  16. Kostopoulos, D. S.; Sevim Erol, A.; Yavuz, A. Y.; Mayda, S. (2021). "A new late Miocene bovid (Mammalia: Artiodactyla: Bovidae) from Çorakyerler (Turkey)". Fossil Record. 24 (1): 9–18. doi:10.5194/fr-24-9-2021.
  17. Lloyd, G. T.; Slater, G. J. (2021). "A total-group phylogenetic metatree for Cetacea and the importance of fossil data in diversification analyses". Systematic Biology. in press. doi:10.1093/sysbio/syab002. PMID 33507304.
  18. Uhen, M. D.; Peredo, C. M. (2021). "The first possible remingtonocetid stem whale from North America". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00799.2020.
  19. Davydenko, S.; Shevchenko, T.; Ryabokon, I.; Tretiakov, R.; Gol’din, P. (2021). "A giant Eocene whale from Ukraine uncovers early cetacean adaptations to the fully aquatic life". Evolutionary Biology. in press. doi:10.1007/s11692-020-09524-8.
  20. Lambert, O.; de Muizon, C.; Varas-Malca, R. M.; Urbina, M.; Bianucci, G. (2021). "Eurhinodelphinids from the early Miocene of Peru: first unambiguous records of these hyper-longirostrine dolphins outside the North Atlantic realm". Rivista Italiana di Paleontologia e Stratigrafia. 127 (1): 17–32. doi:10.13130/2039-4942/15124.
  21. Paolucci, F.; Buono, M. R.; Fernández, M. S.; Cuitiño, J. (2021). "Systematic revision of a Miocene sperm whale from Patagonia, Argentina, and the phylogenetic signal of tympano-periotic bones in Physeteroidea". Acta Palaeontologica Polonica. in press. doi:10.4202/app.00763.2020.
  22. Benites‐Palomino, A.; Vélez‐Juarbe, J.; Collareta, A.; Ochoa, D.; Altamirano, A.; Carré, M.; Laime, M. J.; Urbina, M.; Salas‐Gismondi, R. (2021). "Nasal compartmentalization in Kogiidae (Cetacea, Physeteroidea): insights from a new late Miocene dwarf sperm whale from the Pisco Formation". Papers in Palaeontology. Online edition. doi:10.1002/spp2.1351.
  23. Perri, A. R.; Mitchell, K. J.; Mouton, A.; Álvarez-Carretero, S.; Hulme-Beaman, A.; Haile, J.; Jamieson, A.; Meachen, J.; Lin, A. T.; Schubert, B. W.; Ameen, C.; Antipina, E. E.; Bover, P.; Brace, S.; Carmagnini, A.; Carøe, C.; Samaniego Castruita, J. A.; Chatters, J. C.; Dobney, K.; dos Reis, M.; Evin, A.; Gaubert, P.; Gopalakrishnan, S.; Gower, G.; Heiniger, H.; Helgen, K. M.; Kapp, J.; Kosintsev, P. A.; Linderholm, A.; Ozga, A. T.; Presslee, S.; Salis, A. T.; Saremi, N. F.; Shew, C.; Skerry, K.; Taranenko, D. E.; Thompson, M.; Sablin, M. V.; Kuzmin, Y. V.; Collins, M. J.; Sinding, M.-H. S.; Gilbert, M. T. P.; Stone, A. C.; Shapiro, B.; Van Valkenburgh, B.; Wayne, R. K.; Larson, G.; Cooper, A.; Frantz, L. A. F. (2021). "Dire wolves were the last of an ancient New World canid lineage". Nature. in press. doi:10.1038/s41586-020-03082-x. PMID 33442059.
  24. Lahtinen, M.; Clinnick, D.; Mannermaa, K.; Salonen, J. S.; Viranta, S. (2021). "Excess protein enabled dog domestication during severe Ice Age winters". Scientific Reports. 11: Article number 7. doi:10.1038/s41598-020-78214-4. PMC 7790815. PMID 33414490.
  25. Perri, A. R.; Feuerborn, T. R.; Frantz, L. A. F.; Larson, G.; Malhi, R. S.; Meltzer, D. J.; Witt, K. E. (2021). "Dog domestication and the dual dispersal of people and dogs into the Americas". Proceedings of the National Academy of Sciences of the United States of America. 118 (6): e2010083118. doi:10.1073/pnas.2010083118. PMID 33495362.
  26. Liu, J.; Liu, J.; Zhang, H.; Wagner, J.; Jiangzuo, Q.; Song, Y.; Liu, S.; Wang, Y.; Jin, C. (2021). "The giant short-faced hyena Pachycrocuta brevirostris (Mammalia, Carnivora, Hyaenidae) from Northeast Asia: A reinterpretation of subspecies differentiation and intercontinental dispersal". Quaternary International. in press. doi:10.1016/j.quaint.2020.12.031.
  27. Hu, J.; Westbury, M. V.; Yuan, J.; Zhang, Z.; Chen, S.; Xiao, B.; Hou, X.; Ji, H.; Lai, X.; Hofreiter, M.; Sheng, G. (2021). "Ancient mitochondrial genomes from Chinese cave hyenas provide insights into the evolutionary history of the genus Crocuta". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202934. doi:10.1098/rspb.2020.2934. PMID 33499784.
  28. Reynolds, A. R.; Seymour, K. L.; Evans, D. C. (2021). "Smilodon fatalis siblings reveal life history in a saber-toothed cat". iScience. 24 (1): Article 101916. doi:10.1016/j.isci.2020.101916. PMC 7835254. PMID 33532710.
  29. Yang, Y.; Qiang, L.; Xijun, N.; Cheng, X.; Zhang, J.; Li, H.; Jin, C. (2021). "Tooth micro-wear analysis reveals that persistence of beaver Trogontherium cuvieri (Rodentia, Mammalia) in Northeast China relied on its plastic ecological niche in Pleistocene". Quaternary International. in press. doi:10.1016/j.quaint.2021.01.004.
  30. van de Weerd, A. A.; de Bruijn, H.; Wessels, W. (2021). "New rodents from the late Oligocene site of Gözükızıllı in Anatolia (Turkey)". Historical Biology: An International Journal of Paleobiology. in press. doi:10.1080/08912963.2020.1800682.
  31. O'Leary, M. A. (2021). "A dense sample of fossil primates (Adapiformes, Notharctidae, Notharctinae) from the Early Eocene Willwood Formation, Wyoming: Documentation of gradual change in tooth area and shape through time". American Journal of Physical Anthropology. in press. doi:10.1002/ajpa.24177. PMID 33483945.
  32. DeMiguel, D.; Domingo, L.; Sánchez, I. M.; Casanovas-Vilar, I.; Robles, J. M.; Alba, D. M. (2021). "Palaeoecological differences underlie rare co-occurrence of Miocene European primates". BMC Biology. 19 (1): Article number 6. doi:10.1186/s12915-020-00939-5. PMC 7814646. PMID 33461551.
  33. Urciuoli, A.; Zanolli, C.; Beaudet, A.; Pina, M.; Almécija, S.; Moyà-Solà, S.; Alba, D. M. (2021). "A comparative analysis of the vestibular apparatus in Epipliopithecus vindobonensis: Phylogenetic implications". Journal of Human Evolution. 151: Article 102930. doi:10.1016/j.jhevol.2020.102930. PMID 33422741.
  34. Urciuoli, A; Zanolli, C.; Almécija, S.; Beaudet, A.; Dumoncel, J.; Morimoto, N.; Nakatsukasa, M; Moyà-Solà, S.; Begun, D. R.; Alba, D. M. (2021). "Reassessment of the phylogenetic relationships of the late Miocene apes Hispanopithecus and Rudapithecus based on vestibular morphology". Proceedings of the National Academy of Sciences of the United States of America. 118 (5): e2015215118. doi:10.1073/pnas.2015215118. PMID 33495351.
  35. Karakostis, F. A.; Haeufle, D.; Anastopoulou, I.; Moraitis, K.; Hotz, G.; Tourloukis, V.; Harvati, K. (2021). "Biomechanics of the human thumb and the evolution of dexterity". Current Biology. in press. doi:10.1016/j.cub.2020.12.041. PMID 33513351.
  36. Dumouchel, L.; Bobe, R.; Wynn, J. G.; Barr, W. A. (2021). "The environments of Australopithecus anamensis at Allia Bay, Kenya: A multiproxy analysis of early Pliocene Bovidae". Journal of Human Evolution. 151: Article 102928. doi:10.1016/j.jhevol.2020.102928. PMID 33453510.
  37. Parins-Fukuchi, C. (2021). "Morphological and phylogeographic evidence for budding speciation: an example in hominins". Biology Letters. 17 (1): Article ID 20200754. doi:10.1098/rsbl.2020.0754. PMID 33465331.
  38. Mercader, J.; Akuku, P.; Boivin, N.; Bugumba, R.; Bushozi, P.; Camacho, A.; Carter, T.; Clarke, S.; Cueva-Temprana, A.; Durkin, P.; Favreau, J.; Fella, K.; Haberle, S.; Hubbard, S.; Inwood, J.; Itambu, M.; Koromo, S.; Lee, P.; Mohammed, A.; Mwambwiga, A; Olesilau, L.; Patalano, R.; Roberts, P.; Rule, S.; Saladie, P.; Siljedal, G.; Soto, M.; Umbsaar, J.; Petraglia, M. (2021). "Earliest Olduvai hominins exploited unstable environments ~ 2 million years ago". Nature Communications. 12: Article number 3. doi:10.1038/s41467-020-20176-2. PMC 7791053. PMID 33414467.
  39. Baab, K. L. (2021). "Reconstructing cranial evolution in an extinct hominin". Proceedings of the Royal Society B: Biological Sciences. 288 (1943): Article ID 20202604. doi:10.1098/rspb.2020.2604. PMID 33467996.
  40. Dusseldorp, G. L.; Lombard, M. (2021). "Constraining the likely technological niches of late Middle Pleistocene hominins with Homo naledi as case study". Journal of Archaeological Method and Theory. in press. doi:10.1007/s10816-020-09501-7.
  41. McGrath, K.; Limmer, L. S.; Lockey, A.-L.; Guatelli-Steinberg, D.; Reid, D. J.; Witzel, C.; Bocaege, E.; McFarlin, S. C.; El Zaatari, S. (2021). "3D enamel profilometry reveals faster growth but similar stress severity in Neanderthal versus Homo sapiens teeth". Scientific Reports. 11: Article number 522. doi:10.1038/s41598-020-80148-w. PMC 7804262. PMID 33436796.
  42. Brumm, A.; Oktaviana, A. A.; Burhan, B.; Hakim, B.; Lebe, R.; Zhao, J.; Sulistyarto, P. H.; Ririmasse, M.; Adhityatama, S.; Sumantri, I.; Aubert, M. (2021). "Oldest cave art found in Sulawesi". Science Advances. 7 (3): eabd4648. doi:10.1126/sciadv.abd4648. PMC 7806210. PMID 33523879.
  43. Scerri, E. M. L.; Niang, K.; Candy, I.; Blinkhorn, J.; Mills, W.; Cerasoni, J. N.; Bateman, M. D.; Crowther, A.; Groucutt, H. S. (2021). "Continuity of the Middle Stone Age into the Holocene". Scientific Reports. 11: Article number 70. doi:10.1038/s41598-020-79418-4. PMC 7801626. PMID 33431997.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.