ACER1

Alkaline ceramidase 1 also known as ACER1 is a ceramidase enzyme which in humans is encoded by the ACER1 gene.[5]

ACER1
Identifiers
AliasesACER1, ALKCDase1, ASAH3, alkaline ceramidase 1
External IDsOMIM: 613491 MGI: 2181962 HomoloGene: 15853 GeneCards: ACER1
Gene location (Human)
Chr.Chromosome 19 (human)[1]
Band19p13.3Start6,306,142 bp[1]
End6,333,612 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

125981

171168

Ensembl

ENSG00000167769

ENSMUSG00000045019

UniProt

Q8TDN7

Q8R4X1

RefSeq (mRNA)

NM_133492

NM_175731

RefSeq (protein)

NP_597999

NP_783858

Location (UCSC)Chr 19: 6.31 – 6.33 MbChr 17: 56.95 – 56.98 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Function

ACER1 mediates cellular differentiation by controlling the generation of sphingosine (SPH) and sphingosine-1-phosphate (S1P).[5]

Model organisms

Model organisms have been used in the study of ACER1 function. A conditional knockout mouse line called Acer1tm1a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute.[9] Male and female animals underwent a standardized phenotypic screen[6] to determine the effects of deletion.[10][11][12][13] Additional screens performed: - In-depth immunological phenotyping[7] - in-depth bone and cartilage phenotyping[8]

References

  1. GRCh38: Ensembl release 89: ENSG00000167769 - Ensembl, May 2017
  2. GRCm38: Ensembl release 89: ENSMUSG00000045019 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Mao C, Xu R, Szulc ZM, Bielawski J, Becker KP, Bielawska A, Galadari SH, Hu W, Obeid LM (Aug 2003). "Cloning and characterization of a mouse endoplasmic reticulum alkaline ceramidase: an enzyme that preferentially regulates metabolism of very long chain ceramides". The Journal of Biological Chemistry. 278 (33): 31184–91. doi:10.1074/jbc.M303875200. PMID 12783875.
  6. "International Mouse Phenotyping Consortium".
  7. "Infection and Immunity Immunophenotyping (3i) Consortium".
  8. "OBCD Consortium".
  9. Gerdin AK (Sep 2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Ophthalmologica. 88 (Supplement s246): 4142. doi:10.1111/j.1755-3768.2010.4142.x. S2CID 85911512.
  10. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature. 474 (7351): 337–42. doi:10.1038/nature10163. PMC 3572410. PMID 21677750.
  11. Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature. 474 (7351): 262–3. doi:10.1038/474262a. PMID 21677718.
  12. Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell. 128 (1): 9–13. doi:10.1016/j.cell.2006.12.018. PMID 17218247. S2CID 18872015.
  13. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Sanger Institute Mouse Genetics Project, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell. 154 (2): 452–64. doi:10.1016/j.cell.2013.06.022. PMC 3717207. PMID 23870131.

Further reading


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.