List of ARM microarchitectures

This is a list of microarchitectures based on the ARM family of instruction sets designed by ARM Holdings and 3rd parties, sorted by version of the ARM instruction set, release and name. In 2005, ARM provided a summary of the numerous vendors who implement ARM cores in their design.[1] Keil also provides a somewhat newer summary of vendors of ARM based processors.[2] ARM further provides a chart[3] displaying an overview of the ARM processor lineup with performance and functionality versus capabilities for the more recent ARM core families.

ARM cores

Designed by ARM

ARM family ARM architecture ARM core Feature Cache (I / D), MMU Typical MIPS @ MHz Reference
ARM1 ARMv1 ARM1 First implementation None
ARM2 ARMv2 ARM2 ARMv2 added the MUL (multiply) instruction None 4 MIPS @ 8 MHz
0.33 DMIPS/MHz
ARMv2a ARM250 Integrated MEMC (MMU), graphics and I/O processor. ARMv2a added the SWP and SWPB (swap) instructions None, MEMC1a 7 MIPS @ 12 MHz
ARM3 ARMv2a ARM3 First integrated memory cache 4 KB unified 12 MIPS @ 25 MHz
0.50 DMIPS/MHz
ARM6 ARMv3 ARM60 ARMv3 first to support 32-bit memory address space (previously 26-bit).
ARMv3M first added long multiply instructions (32x32=64).
None 10 MIPS @ 12 MHz
ARM600 As ARM60, cache and coprocessor bus (for FPA10 floating-point unit) 4 KB unified 28 MIPS @ 33 MHz
ARM610 As ARM60, cache, no coprocessor bus 4 KB unified 17 MIPS @ 20 MHz
0.65 DMIPS/MHz
[4]
ARM7 ARMv3 ARM700 8 KB unified 40 MHz
ARM710 As ARM700, no coprocessor bus 8 KB unified 40 MHz [5]
ARM710a As ARM710 8 KB unified 40 MHz
0.68 DMIPS/MHz
ARM7T ARMv4T ARM7TDMI(-S) 3-stage pipeline, Thumb, ARMv4 first to drop legacy ARM 26-bit addressing None 15 MIPS @ 16.8 MHz
63 DMIPS @ 70 MHz
ARM710T As ARM7TDMI, cache 8 KB unified, MMU 36 MIPS @ 40 MHz
ARM720T As ARM7TDMI, cache 8 KB unified, MMU with FCSE (Fast Context Switch Extension) 60 MIPS @ 59.8 MHz
ARM740T As ARM7TDMI, cache MPU
ARM7EJ ARMv5TEJ ARM7EJ-S 5-stage pipeline, Thumb, Jazelle DBX, enhanced DSP instructions None
ARM8 ARMv4 ARM810 5-stage pipeline, static branch prediction, double-bandwidth memory 8 KB unified, MMU 84 MIPS @ 72 MHz
1.16 DMIPS/MHz
[6][7]
ARM9T ARMv4T ARM9TDMI 5-stage pipeline, Thumb None
ARM920T As ARM9TDMI, cache 16 KB / 16 KB, MMU with FCSE (Fast Context Switch Extension) 200 MIPS @ 180 MHz [8]
ARM922T As ARM9TDMI, caches 8 KB / 8 KB, MMU
ARM940T As ARM9TDMI, caches 4 KB / 4 KB, MPU
ARM9E ARMv5TE ARM946E-S Thumb, enhanced DSP instructions, caches Variable, tightly coupled memories, MPU
ARM966E-S Thumb, enhanced DSP instructions No cache, TCMs
ARM968E-S As ARM966E-S No cache, TCMs
ARMv5TEJ ARM926EJ-S Thumb, Jazelle DBX, enhanced DSP instructions Variable, TCMs, MMU 220 MIPS @ 200 MHz
ARMv5TE ARM996HS Clockless processor, as ARM966E-S No caches, TCMs, MPU
ARM10E ARMv5TE ARM1020E 6-stage pipeline, Thumb, enhanced DSP instructions, (VFP) 32 KB / 32 KB, MMU
ARM1022E As ARM1020E 16 KB / 16 KB, MMU
ARMv5TEJ ARM1026EJ-S Thumb, Jazelle DBX, enhanced DSP instructions, (VFP) Variable, MMU or MPU
ARM11 ARMv6 ARM1136J(F)-S 8-stage pipeline, SIMD, Thumb, Jazelle DBX, (VFP), enhanced DSP instructions, unaligned memory access Variable, MMU 740 @ 532–665 MHz (i.MX31 SoC), 400–528 MHz [9]
ARMv6T2 ARM1156T2(F)-S 9-stage pipeline, SIMD, Thumb-2, (VFP), enhanced DSP instructions Variable, MPU [10]
ARMv6Z ARM1176JZ(F)-S As ARM1136EJ(F)-S Variable, MMU + TrustZone 965 DMIPS @ 772 MHz, up to 2,600 DMIPS with four processors [11]
ARMv6K ARM11MPCore As ARM1136EJ(F)-S, 1–4 core SMP Variable, MMU
SecurCore ARMv6-M SC000 As Cortex-M0 0.9 DMIPS/MHz
ARMv4T SC100 As ARM7TDMI
ARMv7-M SC300 As Cortex-M3 1.25 DMIPS/MHz
Cortex-M ARMv6-M Cortex-M0 Microcontroller profile, most Thumb + some Thumb-2,[12] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory Optional cache, no TCM, no MPU 0.84 DMIPS/MHz [13]
Cortex-M0+ Microcontroller profile, most Thumb + some Thumb-2,[12] hardware multiply instruction (optional small), optional system timer, optional bit-banding memory Optional cache, no TCM, optional MPU with 8 regions 0.93 DMIPS/MHz [14]
Cortex-M1 Microcontroller profile, most Thumb + some Thumb-2,[12] hardware multiply instruction (optional small), OS option adds SVC / banked stack pointer, optional system timer, no bit-banding memory Optional cache, 0–1024 KB I-TCM, 0–1024 KB D-TCM, no MPU 136 DMIPS @ 170 MHz,[15] (0.8 DMIPS/MHz FPGA-dependent)[16] [17]
ARMv7-M Cortex-M3 Microcontroller profile, Thumb / Thumb-2, hardware multiply and divide instructions, optional bit-banding memory Optional cache, no TCM, optional MPU with 8 regions 1.25 DMIPS/MHz [18]
ARMv7E-M Cortex-M4 Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv4-SP single-precision FPU, hardware multiply and divide instructions, optional bit-banding memory Optional cache, no TCM, optional MPU with 8 regions 1.25 DMIPS/MHz (1.27 w/FPU) [19]
Cortex-M7 Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv5 single and double precision FPU, hardware multiply and divide instructions 0−64 KB I-cache, 0−64 KB D-cache, 0–16 MB I-TCM, 0–16 MB D-TCM (all these w/optional ECC), optional MPU with 8 or 16 regions 2.14 DMIPS/MHz [20]
ARMv8-M Baseline Cortex-M23 Microcontroller profile, Thumb-1 (most), Thumb-2 (some), Divide, TrustZone Optional cache, no TCM, optional MPU with 16 regions 0.99 DMIPS/MHz [21]
ARMv8-M Mainline Cortex-M33 Microcontroller profile, Thumb-1, Thumb-2, Saturated, DSP, Divide, FPU (SP), TrustZone, Co-processor Optional cache, no TCM, optional MPU with 16 regions 1.50 DMIPS/MHz [22]
Cortex-M35P Microcontroller profile, Thumb-1, Thumb-2, Saturated, DSP, Divide, FPU (SP), TrustZone, Co-processor Built-in cache (with option 2–16 KB), I-cache, no TCM, optional MPU with 16 regions 1.50 DMIPS/MHz [23]
ARMv8.1-M Mainline Cortex-M55 [24]
Cortex-R ARMv7-R Cortex-R4 Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lockstep with fault logic 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt. MPU with 8/12 regions 1.67 DMIPS/MHz[25] [26]
Cortex-R5 Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lock-step with fault logic / optional as 2 independent cores, low-latency peripheral port (LLPP), accelerator coherency port (ACP)[27] 0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt. MPU with 12/16 regions 1.67 DMIPS/MHz[25] [28]
Cortex-R7 Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 11-stage pipeline dual-core running lock-step with fault logic / out-of-order execution / dynamic register renaming / optional as 2 independent cores, low-latency peripheral port (LLPP), ACP[27] 0–64 KB / 0–64 KB, ? of 0–128 KB TCM, opt. MPU with 16 regions 2.50 DMIPS/MHz[25] [29]
Cortex-R8 TBD 0–64 KB / 0–64 KB L1, 0–1 / 0–1 MB TCM, opt MPU with 24 regions 2.50 DMIPS/MHz[25] [30]
ARMv8-R Cortex-R52 TBD 0–32 KB / 0–32 KB L1, 0–1 / 0–1 MB TCM, opt MPU with 24+24 regions 2.16 DMIPS/MHz[31] [32]
Cortex-R82 TBD 16–128 KB /16–64 KB L1, 64K–1MB L2, 0.16–1 / 0.16–1 MB TCM,

opt MPU with 32+32 regions

3.41 DMIPS/MHz[33] [34]
Cortex-A
(32-bit)
ARMv7-A Cortex-A5 Application profile, ARM / Thumb / Thumb-2 / DSP / SIMD / Optional VFPv4-D16 FPU / Optional NEON / Jazelle RCT and DBX, 1–4 cores / optional MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) 4−64 KB / 4−64 KB L1, MMU + TrustZone 1.57 DMIPS/MHz per core [35]
Cortex-A7 Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / Jazelle RCT and DBX / Hardware virtualization, in-order execution, superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), architecture and feature set are identical to A15, 8–10 stage pipeline, low-power design[36] 8−64 KB / 8−64 KB L1, 0–1 MB L2, MMU + TrustZone 1.9 DMIPS/MHz per core [37]
Cortex-A8 Application profile, ARM / Thumb / Thumb-2 / VFPv3 FPU / NEON / Jazelle RCT and DAC, 13-stage superscalar pipeline 16–32 KB / 16–32 KB L1, 0–1 MB L2 opt. ECC, MMU + TrustZone Up to 2000 (2.0 DMIPS/MHz in speed from 600 MHz to greater than 1 GHz) [38]
Cortex-A9 Application profile, ARM / Thumb / Thumb-2 / DSP / Optional VFPv3 FPU / Optional NEON / Jazelle RCT and DBX, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) 16–64 KB / 16–64 KB L1, 0–8 MB L2 opt. parity, MMU + TrustZone 2.5 DMIPS/MHz per core, 10,000 DMIPS @ 2 GHz on Performance Optimized TSMC 40G (dual-core) [39]
Cortex-A12 Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP) 32−64 KB 3.0 DMIPS/MHz per core [40]
Cortex-A15 Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, 15-24 stage pipeline[36] 32 KB w/parity / 32 KB w/ECC L1, 0–4 MB L2, L2 has ECC, MMU + TrustZone At least 3.5 DMIPS/MHz per core (up to 4.01 DMIPS/MHz depending on implementation)[41] [42]
Cortex-A17 Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP 32 KB L1, 256 KB–8 MB L2 w/optional ECC 2.8 DMIPS/MHz [43]
ARMv8-A Cortex-A32 Application profile, AArch32, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline 8–64 KB w/optional parity / 8−64 KB w/optional ECC L1 per core, 128 KB–1 MB L2 w/optional ECC shared [44]
Cortex-A
(64-bit)
ARMv8-A Cortex-A34 Application profile, AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline 8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–1 MB L2 shared, 40-bit physical addresses [45]
Cortex-A35 Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline 8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–1 MB L2 shared, 40-bit physical addresses 1.78 DMIPS/MHz [46]
Cortex-A53 Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline 8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–2 MB L2 shared, 40-bit physical addresses 2.3 DMIPS/MHz [47]
Cortex-A57 Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-width decode superscalar, deeply out-of-order pipeline 48 KB w/DED parity / 32 KB w/ECC L1 per core; 512 KB–2 MB L2 shared w/ECC; 44-bit physical addresses 4.1–4.5 DMIPS/MHz[48][49] [50]
Cortex-A72 Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-width superscalar, deeply out-of-order pipeline 48 KB w/DED parity / 32 KB w/ECC L1 per core; 512 KB–2 MB L2 shared w/ECC; 44-bit physical addresses 4.7 DMIPS/MHz [51]
Cortex-A73 Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width superscalar, deeply out-of-order pipeline 64 KB / 32−64 KB L1 per core, 256 KB–8 MB L2 shared w/ optional ECC, 44-bit physical addresses 4.8 DMIPS/MHz[52] [53]
ARMv8.2-A Cortex-A55 Application profile, AArch32 and AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline[54] 16−64 KB / 16−64 KB L1, 256 KB L2 per core, 4 MB L3 shared [55]
Cortex-A65 Application profile, AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-wide decode superscalar, 3-width issue, out-of-order pipeline, SMT [56]
Cortex-A65AE As ARM Cortex-A65, adds dual core lockstep for safety applications 64 / 64 KB L1, 256 KB L2 per core, 4 MB L3 shared [57]
Cortex-A75 Application profile, AArch32 and AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-width decode superscalar, deeply out-of-order pipeline[58] 64 / 64 KB L1, 512 KB L2 per core, 4 MB L3 shared [59]
Cortex-A76 Application profile, AArch32 (non-privileged level or EL0 only) and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 4-width decode superscalar, 8-way issue, 13 stage pipeline, deeply out-of-order pipeline[60] 64 / 64 KB L1, 256−512 KB L2 per core, 512 KB−4 MB L3 shared [61]
Cortex-A76AE As ARM Cortex-A76, adds dual core lockstep for safety applications [62]
Cortex-A77 Application profile, AArch32 (non-privileged level or EL0 only) and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 4-width decode superscalar, 6-width instruction fetch, 12-way issue, 13 stage pipeline, deeply out-of-order pipeline[60] 1.5K L0 MOPs cache, 64 / 64 KB L1, 256−512 KB L2 per core, 512 KB−4 MB L3 shared [63]
Cortex-A78 [64]
Cortex-A78AE As ARM Cortex-A78, adds dual core lockstep for safety applications [65]
Cortex-X1 Performance-tuned variant of Cortex-A78
Cortex-A78C [66]
Neoverse Neoverse N1 Application profile, AArch32 (non-privileged level or EL0 only) and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 4-width decode superscalar, 8-way dispatch/issue, 13 stage pipeline, deeply out-of-order pipeline[60] 64 / 64 KB L1, 512−1024 KB L2 per core, 2−128 MB L3 shared, 128 MB system level cache [67]
Neoverse E1 Application profile, AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-wide decode superscalar, 3-width issue, 10 stage pipeline, out-of-order pipeline, SMT 32−64 KB / 32−64 KB L1, 256 KB L2 per core, 4 MB L3 shared [68]
ARM family ARM architecture ARM core Feature Cache (I / D), MMU Typical MIPS @ MHz Reference

As Dhrystone is a synthetic benchmark developed in 1980s, it is no longer representative of prevailing workloads  use with caution.

Designed by third parties

These cores implement the ARM instruction set, and were developed independently by companies with an architectural license from ARM.

Core Family Instruction set Microarchitecture Feature Cache (I / D), MMU Typical MIPS @ MHz
StrongARM
(Digital)
ARMv4 SA-110 5-stage pipeline 16 KB / 16 KB, MMU 100–233 MHz
1.0 DMIPS/MHz
SA-1100 derivative of the SA-110 16 KB / 8 KB, MMU
Faraday[69]
(Faraday Technology)
ARMv4FA5106-stage pipelineUp to 32 KB / 32 KB cache, MPU1.26 DMIPS/MHz
100–200 MHz
FA526Up to 32 KB / 32 KB cache, MMU1.26 MIPS/MHz
166–300 MHz
FA6268-stage pipeline32 KB / 32 KB cache, MMU1.35 DMIPS/MHz
500 MHz
ARMv5TEFA606TE5-stage pipelineNo cache, no MMU1.22 DMIPS/MHz
200 MHz
FA626TE8-stage pipeline32 KB / 32 KB cache, MMU1.43 MIPS/MHz
800 MHz
FMP626TE8-stage pipeline, SMP1.43 MIPS/MHz
500 MHz
FA726TE13 stage pipeline, dual issue2.4 DMIPS/MHz
1000 MHz
XScale
(Intel / Marvell)
ARMv5TE XScale 7-stage pipeline, Thumb, enhanced DSP instructions 32 KB / 32 KB, MMU 133–400 MHz
Bulverde Wireless MMX, wireless SpeedStep added 32 KB / 32 KB, MMU 312–624 MHz
Monahans[70] Wireless MMX2 added 32 KB / 32 KB L1, optional L2 cache up to 512 KB, MMU Up to 1.25 GHz
Sheeva
(Marvell)
ARMv5Feroceon5–8 stage pipeline, single-issue16 KB / 16 KB, MMU600–2000 MHz
Jolteon5–8 stage pipeline, dual-issue32 KB / 32 KB, MMU
PJ1 (Mohawk)5–8 stage pipeline, single-issue, Wireless MMX232 KB / 32 KB, MMU1.46 DMIPS/MHz
1.06 GHz
ARMv6 / ARMv7-APJ46–9 stage pipeline, dual-issue, Wireless MMX2, SMP32 KB / 32 KB, MMU2.41 DMIPS/MHz
1.6 GHz
Snapdragon
(Qualcomm)
ARMv7-A Scorpion[71] 1 or 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv3 FPU / NEON (128-bit wide) 256 KB L2 per core 2.1 DMIPS/MHz per core
Krait[71] 1, 2, or 4 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON (128-bit wide) 4 KB / 4 KB L0, 16 KB / 16 KB L1, 512 KB L2 per core 3.3 DMIPS/MHz per core
ARMv8-A Kryo[72] 4 cores.?Up to 2.2 GHz

(6.3 DMIPS/MHz)

Ax
(Apple)
ARMv7-A Swift[73] 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON L1: 32 KB / 32 KB, L2: 1 MB 3.5 DMIPS/MHz per core
ARMv8-ACyclone[74]2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64. Out-of-order, superscalar.L1: 64 KB / 64 KB, L2: 1 MB, L3: 4 MB1.3 or 1.4 GHz
ARMv8-ATyphoon[74][75]2 or 3 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64L1: 64 KB / 64 KB, L2: 1 MB or 2 MB, L3: 4 MB1.4 or 1.5 GHz
ARMv8-ATwister[76]2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64L1: 64 KB / 64 KB, L2: 2 MB, L3: 4 MB or 0 MB1.85 or 2.26 GHz
ARMv8.1-AHurricane and Zephyr[77]Hurricane: 2 or 3 cores. AArch64, 6-decode, 6-issue, 9-wide, superscalar, out-of-order
Zephyr: 2 or 3 cores. AArch64.
L1: 64 KB / 64 KB, L2: 3 MB or 8 MB, L3: 4 MB or 0 MB2.34 or 2.38 GHz
ARMv8.2-AMonsoon and Mistral[78]Monsoon: 2 cores. AArch64, 7-decode, ?-issue, 11-wide, superscalar, out-of-order
Mistral: 4 cores. AArch64, out-of-order, superscalar. Based on Swift.
L1I: 128 KB, L1D: 64 KB, L2: 8 MB, L3: 4 MB2.39 GHz
ARMv8.3-AVortex and Tempest[79]Vortex: 2 or 4 cores. AArch64, 7-decode, ?-issue, 11-wide, superscalar, out-of-order
Tempest: 4 cores. AArch64, 3-decode, out-of-order, superscalar. Based on Swift.
L1: 128 KB / 128 KB, L2: 8 MB, L3: 8 MB2.5 GHz
ARMv8.4-ALightning and Thunder[80]Lightning: 2 cores. AArch64, 7-decode, ?-issue, 11-wide, superscalar, out-of-order
Thunder: 4 cores. AArch64, out-of-order, superscalar.
L1: 128 KB / 128 KB, L2: 8 MB, L3: 16 MB2.66 GHz
X-Gene
(Applied Micro)
ARMv8-AX-Gene64-bit, quad issue, SMP, 64 cores[81]Cache, MMU, virtualization3 GHz (4.2 DMIPS/MHz per core)
Denver
(Nvidia)
ARMv8-ADenver[82][83]2 cores. AArch64, 7-wide superscalar, in-order, dynamic code optimization, 128 MB optimization cache,
Denver1: 28nm, Denver2:16nm
128 KB I-cache / 64 KB D-cacheUp to 2.5 GHz
Carmel
(Nvidia)
ARMv8.2-ACarmel[84][85]2 cores. AArch64, 10-wide superscalar, in-order, dynamic code optimization, ? MB optimization cache,
functional safety, dual execution, parity & ECC
? KB I-cache / ? KB D-cacheUp to ? GHz
ThunderX
(Cavium)
ARMv8-AThunderX64-bit, with two models with 8–16 or 24–48 cores (×2 w/two chips)?Up to 2.2 GHz
K12
(AMD)
ARMv8-AK12[86]???
Exynos
(Samsung)
ARMv8-AM1/M2 ("Mongoose")[87]4 cores. AArch64, 4-wide, quad-issue, superscalar, out-of-order64 KB I-cache / 32 KB D-cache, L2: 16-way shared 2 MB5.1 DMIPS/MHz

(2.6 GHz)

ARMv8-A M3 ("Meerkat")[88] 4 cores, AArch64, 6-decode, 6-issue, 6-wide. superscalar, out-of-order64 KB I-cache / 32 KB D-cache, L2: 8-way private 512 KB, L3: 16-way shared 4 MB?
ARMv8.2-A M4 ("Cheetah")[89] 2 cores, AArch64, 6-decode, 6-issue, 6-wide. superscalar, out-of-order 64 KB I-cache / 32 KB D-cache, L2: 8-way private 512 KB, L3: 16-way shared 4 MB ?

ARM core timeline

The following table lists each core by the year it was announced.[90][91] Cores before ARM7 aren't included in this table.

Year Classic cores Cortex cores Neoverse cores
ARM7ARM8ARM9ARM10ARM11MicrocontrollerReal-timeApplication
(32-bit)
Application
(64-bit)
Application
(64-bit)
1993 ARM700
1994 ARM710
ARM7DI
ARM7TDMI
1995 ARM710a
1996 ARM810
1997 ARM710T
ARM720T
ARM740T
1998 ARM9TDMI
ARM940T
1999 ARM9E-S
ARM966E-S
2000 ARM920T
ARM922T
ARM946E-S
ARM1020T
2001 ARM7TDMI-S
ARM7EJ-S
ARM9EJ-S
ARM926EJ-S
ARM1020E
ARM1022E
2002 ARM1026EJ-SARM1136J(F)-S
2003 ARM968E-SARM1156T2(F)-S
ARM1176JZ(F)-S
2004 Cortex-M3
2005 ARM11MPCoreCortex-A8
2006 ARM996HS
2007 Cortex-M1Cortex-A9
2008
2009 Cortex-M0Cortex-A5
2010 Cortex-M4(F)Cortex-A15
2011 Cortex-R4
Cortex-R5
Cortex-R7
Cortex-A7
2012 Cortex-M0+Cortex-A53
Cortex-A57
2013 Cortex-A12
2014 Cortex-M7(F)Cortex-A17
2015 Cortex-A35
Cortex-A72
2016 Cortex-M23
Cortex-M33(F)
Cortex-R8
Cortex-R52
Cortex-A32Cortex-A73
2017 Cortex-A55
Cortex-A75
2018 Cortex-M35P(F)Cortex-A65AE
Cortex-A76
Cortex-A76AE
2019 Cortex-A77Neoverse E1
Neoverse N1
2020 Cortex-M55(F)Cortex-R82 Cortex-A78
Cortex-X1[92]

See also

References

  1. "ARM Powered Standard Products" (PDF). 2005. Archived from the original (PDF) on 20 October 2017. Retrieved 23 December 2017.
  2. ARM Ltd and ARM Germany GmbH. "Device Database". Keil. Archived from the original on 10 January 2011. Retrieved 6 January 2011.
  3. "Processors". ARM. 2011. Archived from the original on 17 January 2011. Retrieved 6 January 2011.
  4. "ARM610 Datasheet" (PDF). ARM Holdings. August 1993. Retrieved 29 January 2019.
  5. "ARM710 Datasheet" (PDF). ARM Holdings. July 1994. Retrieved 29 January 2019.
  6. ARM Holdings (7 August 1996). "ARM810 – Dancing to the Beat of a Different Drum" (PDF). Hot Chips. Archived (PDF) from the original on 24 December 2018. Retrieved 14 November 2018.
  7. "VLSI Technology Now Shipping ARM810". EE Times. 26 August 1996. Archived from the original on 26 September 2013. Retrieved 21 September 2013.
  8. Register 13, FCSE PID register Archived 7 July 2011 at the Wayback Machine ARM920T Technical Reference Manual
  9. "ARM1136J(F)-S – ARM Processor". Arm.com. Archived from the original on 21 March 2009. Retrieved 18 April 2009.
  10. "ARM1156 Processor". Arm Holdings. Archived from the original on 13 February 2010.
  11. "ARM11 Processor Family". ARM. Archived from the original on 15 January 2011. Retrieved 12 December 2010.
  12. "Cortex-M0/M0+/M1 Instruction set; ARM Holding". Archived from the original on 18 April 2013.
  13. "Cortex-M0". Arm Developer. Retrieved 23 September 2020.
  14. "Cortex-M0+". Arm Developer. Retrieved 23 September 2020.
  15. "ARM Extends Cortex Family with First Processor Optimized for FPGA" (Press release). ARM Holdings. 19 March 2007. Archived from the original on 5 May 2007. Retrieved 11 April 2007.
  16. "ARM Cortex-M1". ARM product website. Archived from the original on 1 April 2007. Retrieved 11 April 2007.
  17. "Cortex-M1". Arm Developer. Retrieved 23 September 2020.
  18. "Cortex-M3". Arm Developer. Retrieved 23 September 2020.
  19. "Cortex-M4". Arm Developer. Retrieved 23 September 2020.
  20. "Cortex-M7". Arm Developer. Retrieved 23 September 2020.
  21. "Cortex-M23". Arm Developer. Retrieved 23 September 2020.
  22. "Cortex-M33". Arm Developer. Retrieved 23 September 2020.
  23. "Cortex-M35P". Arm Developer. Archived from the original on 8 May 2019. Retrieved 29 April 2019.
  24. "Cortex-M55". Arm Developer. Retrieved 28 September 2020.
  25. "Cortex-R – Arm Developer". ARM Developer. Arm Ltd. Archived from the original on 30 March 2018. Retrieved 29 March 2018.
  26. "Cortex-R4". Arm Developer. Retrieved 23 September 2020.
  27. "Cortex-R5 & Cortex-R7 Press Release; ARM Holdings; 31 January 2011". Archived from the original on 7 July 2011. Retrieved 13 June 2011.
  28. "Cortex-R5". Arm Developer. Retrieved 23 September 2020.
  29. "Cortex-R7". Arm Developer. Retrieved 23 September 2020.
  30. "Cortex-R8". Arm Developer. Retrieved 23 September 2020.
  31. "Cortex-R". Arm Developer. Archived from the original on 30 March 2018. Retrieved 26 October 2018.
  32. "Cortex-R52". Arm Developer. Archived from the original on 26 October 2018. Retrieved 26 October 2018.
  33. "Cortex-R82". Arm Developer. Retrieved 30 September 2020.
  34. "Arm Cortex-R comparison Table_v2" (PDF). ARM Developer. 2020. Retrieved 30 September 2020.
  35. "Cortex-A5". Arm Developer. Retrieved 23 September 2020.
  36. "Deep inside ARM's new Intel killer". The Register. 20 October 2011. Archived from the original on 10 August 2017. Retrieved 10 August 2017.
  37. "Cortex-A7". Arm Developer. Retrieved 23 September 2020.
  38. "Cortex-A8". Arm Developer. Retrieved 23 September 2020.
  39. "Cortex-A9". Arm Developer. Retrieved 23 September 2020.
  40. "Cortex-A12 Summary; ARM Holdings". Archived from the original on 7 June 2013. Retrieved 3 June 2013.
  41. "Exclusive : ARM Cortex-A15 "40 Per Cent" Faster Than Cortex-A9 | ITProPortal.com". Archived from the original on 21 July 2011. Retrieved 13 June 2011.
  42. "Cortex-A15". Arm Developer. Retrieved 23 September 2020.
  43. "Cortex-A17". Arm Developer. Retrieved 23 September 2020.
  44. "Cortex-A32". Arm Developer. Retrieved 23 September 2020.
  45. "Cortex-A34". Arm Developer. Retrieved 11 October 2019.
  46. "Cortex-A35". Arm Developer. Retrieved 23 September 2020.
  47. "Cortex-A53". Arm Developer. Retrieved 23 September 2020.
  48. "Cortex-Ax vs performance". Archived from the original on 15 June 2017. Retrieved 5 May 2017.
  49. "Relative Performance of ARM Cortex-A 32-bit and 64-bit Cores". Archived from the original on 1 May 2017. Retrieved 5 May 2017.
  50. "Cortex-A57". Arm Developer. Retrieved 23 September 2020.
  51. "Cortex-A72". Arm Developer. Retrieved 23 September 2020.
  52. "Cortex-Ax vs performance". Archived from the original on 15 June 2017. Retrieved 5 May 2017.
  53. "Cortex-A73". Arm Developer. Retrieved 23 September 2020.
  54. "Hardware.Info Nederland". nl.hardware.info (in Dutch). Archived from the original on 24 December 2018. Retrieved 27 November 2017.
  55. "Cortex-A55". Arm Developer. Retrieved 23 September 2020.
  56. "Cortex-A65". Arm Developer. Retrieved 3 October 2020.
  57. "Cortex-A65AE". Arm Developer. Retrieved 11 October 2019.
  58. "Hardware.Info Nederland". nl.hardware.info (in Dutch). Archived from the original on 24 December 2018. Retrieved 27 November 2017.
  59. "Cortex-A75". Arm Developer. Retrieved 23 September 2020.
  60. "Arm's Cortex-A76 CPU Unveiled: Taking Aim at the Top for 7nm". AnandTech. Archived from the original on 16 November 2018. Retrieved 15 November 2018.
  61. "Cortex-A76". Arm Developer. Retrieved 23 September 2020.
  62. "Cortex-A76AE". Arm Developer. Retrieved 29 September 2020.
  63. "Cortex-A77". Arm Developer. Retrieved 16 June 2019.
  64. "Cortex-A78". Arm Developer. Retrieved 29 September 2020.
  65. "Cortex-A78AE". Arm Developer. Retrieved 30 September 2020.
  66. "Cortex-A78C". Arm Developer. Retrieved 26 November 2020.
  67. "Neoverse N1". Arm Developer. Retrieved 16 June 2019.
  68. "Neoverse E1". Arm Developer. Retrieved 3 October 2020.
  69. "Processor Cores". Faraday Technology. Archived from the original on 19 February 2015. Retrieved 19 February 2015.
  70. "3rd Generation Intel XScale Microarchitecture: Developer's Manual" (PDF). download.intel.com. Intel. May 2007. Archived (PDF) from the original on 25 February 2008. Retrieved 2 December 2010.
  71. "Qualcomm's New Snapdragon S4: MSM8960 & Krait Architecture Explored". AnandTech. Retrieved 23 September 2020.
  72. "Snapdragon 820 and Kryo CPU: heterogeneous computing and the role of custom compute". Qualcomm. 2 September 2015. Archived from the original on 5 September 2015. Retrieved 6 September 2015.
  73. Lal Shimpi, Anand (15 September 2012). "The iPhone 5's A6 SoC: Not A15 or A9, a Custom Apple Core Instead". AnandTech. Archived from the original on 15 September 2012. Retrieved 15 September 2012.
  74. Smith, Ryan (11 November 2014). "Apple A8X's GPU - GAX6850, Even Better Than I Thought". AnandTech. Archived from the original on 30 November 2014. Retrieved 29 November 2014.
  75. Chester, Brandon (15 July 2015). "Apple Refreshes The iPod Touch With A8 SoC And New Cameras". AnandTech. Archived from the original on 5 September 2015. Retrieved 11 September 2015.
  76. Ho, Joshua (28 September 2015). "iPhone 6s and iPhone 6s Plus Preliminary Results". AnandTech. Archived from the original on 26 May 2016. Retrieved 18 December 2015.
  77. Ho, Joshua (28 September 2015). "The iPhone 7 and iPhone 7 Plus Review". AnandTech. Archived from the original on 14 September 2017. Retrieved 14 September 2017.
  78. "A11 Bionic - Apple". WikiChip. Retrieved 1 February 2019.
  79. "The iPhone XS & XS Max Review: Unveiling the Silicon Secrets". AnandTech. Archived from the original on 12 February 2019. Retrieved 11 February 2019.
  80. Frumusanu, Andrei. "The Apple iPhone 11, 11 Pro & 11 Pro Max Review: Performance, Battery, & Camera Elevated". AnandTech. Retrieved 20 October 2019.
  81. "AppliedMicro's 64-core chip could spark off ARM core war copy". Archived from the original on 21 August 2014. Retrieved 21 August 2014.
  82. "NVIDIA Denver Hot Chips Disclosure". Archived from the original on 5 December 2014. Retrieved 29 November 2014.
  83. "Mile High Milestone: Tegra K1 "Denver" Will Be First 64-bit ARM Processor for Android". Archived from the original on 12 August 2014. Retrieved 29 November 2014.
  84. "Drive Xavier für autonome Autos wird ausgeliefert" (in German). Archived from the original on 5 March 2018. Retrieved 5 March 2018.
  85. "NVIDIA Drive Xavier SOC Detailed – A Marvel of Engineering, Biggest and Most Complex SOC Design To Date With 9 Billion Transistors". Archived from the original on 24 February 2018. Retrieved 5 March 2018.
  86. "AMD Announces K12 Core: Custom 64-bit ARM Design in 2016". Archived from the original on 26 June 2015. Retrieved 26 June 2015.
  87. "Samsung Announces Exynos 8890 with Cat.12/13 Modem and Custom CPU". AnandTech. Retrieved 23 September 2020.
  88. "Hot Chips 2018: Samsung's Exynos-M3 CPU Architecture Deep Dive". AnandTech. Archived from the original on 20 August 2018. Retrieved 20 August 2018.
  89. "Evolution of the Samsung Exynos CPU Microarchitecture" (PDF). Retrieved 5 February 2021.
  90. "ARM Company Milestones". Archived from the original on 28 March 2014. Retrieved 6 April 2014.
  91. "ARM Press Releases". Archived from the original on 9 April 2014. Retrieved 6 April 2014.
  92. https://www.anandtech.com/show/15813/arm-cortex-a78-cortex-x1-cpu-ip-diverging

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.