Mackey space

In mathematics, particularly in functional analysis, a Mackey space is a locally convex topological vector space X such that the topology of X coincides with the Mackey topology τ(X,X), the finest topology which still preserves the continuous dual.

Examples

Examples of Mackey spaces include:

Properties

  • A locally convex space with continuous dual is a Mackey space if and only if each convex and -relatively compact subset of is equicontinuous.
  • The completion of a Mackey space is again a Mackey space.[3]
  • A separated quotient of a Mackey space is again a Mackey space.
  • A Mackey space need not be separable, complete, quasi-barrelled, nor -quasi-barrelled.

See also

References

  1. Schaefer (1999) p. 132
  2. Schaefer (1999) p. 138
  3. Schaefer (1999) p. 133
  • Robertson, A.P.; W.J. Robertson (1964). Topological vector spaces. Cambridge Tracts in Mathematics. 53. Cambridge University Press. p. 81.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. pp. 132–133. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.