Mechanochemistry

Mechanochemistry or mechanical chemistry is the coupling of mechanical and chemical phenomena on a molecular scale and includes mechanical breakage, chemical behaviour of mechanically stressed solids (e.g., stress-corrosion cracking or enhanced oxidation[1]), tribology, polymer degradation under shear, cavitation-related phenomena (e.g., sonochemistry and sonoluminescence), shock wave chemistry and physics, and even the burgeoning field of molecular machines. Mechanochemistry can be seen as an interface between chemistry and mechanical engineering. It is possible to synthesize chemical products by using only mechanical action. The mechanisms of mechanochemical transformations are often complex and different from usual thermal or photochemical mechanisms.[2][3] The method of ball milling is a widely used process in which mechanical force is used to achieve chemical processing and transformations.[4][5] The special issue of Chemical Society Review (vol. 42, 2013, Issue 18) is dedicated to the theme of mechanochemistry. Fundamentals and applications ranging from nano materials to technology have been reviewed.[6] The mechanochemical approach has been used to synthesize metallic nanoparticles, catalysts, magnets, γ‐graphyne, metal iodates, nickel–vanadium carbide and molybdenum–vanadium carbide nanocomposite powders[7]

Mechanochemistry is radically different from the traditional way of dissolving, heating and stirring chemicals in a solution. Because it eliminates the need for many solvents, mechanochemistry could help make many chemical processes used by industry more environmentally friendly.[8][9] For example, the mechanochemical process has been used as an environmentally preferable way to synthesize pharmaceutically-attractive phenol hydrazones.[10]

The term mechanochemistry is sometimes confused with mechanosynthesis, which refers specifically to the machine-controlled construction of complex molecular products.[11][12]

Mechanochemical phenomena have been utilized since time immemorial, for example in making fire. The oldest method of making fire is to rub pieces of wood against each other, creating friction and hence heat, allowing the wood to undergo combustion at a high temperature. Another method involves the use of flint and steel, during which a spark (a small particle of pyrophoric metal) spontaneously combusts in air, starting fire instantaneously.

See also

References

  1. Munnings, C.; Badwal, S. P. S.; Fini, D. (20 February 2014). "Spontaneous stress-induced oxidation of Ce ions in Gd-doped ceria at room temperature". Ionics. 20 (8): 1117–1126. doi:10.1007/s11581-014-1079-2.
  2. Hickenboth, Charles R.; Moore, Jeffrey S.; White, Scott R.; Sottos, Nancy R.; Baudry1, Jerome; Wilson, Scott R. (2007). "Biasing Reaction Pathways with Mechanical Force". Nature. 446 (7134): 423–427. Bibcode:2007Natur.446..423H. doi:10.1038/nature05681. PMID 17377579.(subscription required)
  3. Carlier L. & al. , Greener pharmacy using solvent-free synthesis: investigation of the mechanism in the case of dibenzophenazine, Powder Technol. 2013, 240, 41-47.
  4. Carlier L. & al. , Use of co-grinding as a solvent-free solid state method to synthesize dibenzophenazines, Tetrahedron Let. 2011, 52, 4686-4689.
  5. Salmatonidis A. et al., Chemical Cross-Linking of Anatase Nanoparticle Thin Films for Enhanced Mechanical Properties, Langmuir, 2018, 34, 21 , 6109-6116, DOI: https://doi.org/10.1021/acs.langmuir.8b00479
  6. Hallmarks of mechanochemistry: from nanoparticles to technology, Peter Baláž, Marcela Achimovičová,Matej Baláž, Peter Billik, Zara Cherkezova-Zheleva, José Manuel Criado, Francesco Delogu, Erika Dutková, Eric Gaffet, Francisco José Gotor, Rakesh Kumar, Ivan Mitov, Tadej Rojac, Mamoru Senna, Andrey Streletskiikl and Krystyna Wieczorek-Ciurowam, Chem. Soc. Rev., 2013,42, 7571-7637, DOI: 10.1039/C3CS35468G
  7. Chaudhary, V., et al., ChemistryOpen (2018) 7 (8), 590, https://onlinelibrary.wiley.com/doi/full/10.1002/open.201800091
  8. Chaudhary, V., et al., ChemPhysChem (2018) 19 (18), 2370, https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201800318
  9. Lim, Xiaozhi (July 18, 2016). "Grinding Chemicals Together in an Effort to be Greener". The New York Times. ISSN 0362-4331. Retrieved August 6, 2016.
  10. Oliveira P.F.M., Baron M., Chamayou A., André-Barrès C., Guidetti B., Baltas M., Solvent-free mechanochemical route for green synthesis of pharmaceutically attractive phenol-hydrazones, RSC Adv. (2014), 4, 56736-56742, doi: 10.1039/c4ra10489g
  11. Drexler, K. Eric (1992). Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York: John Wiley & Sons. ISBN 978-0-471-57547-4.
  12. Batelle Memorial Institute and Foresight Nanotech Institute. "Technology Roadmap for Productive Nanosystems" (PDF). Retrieved 23 February 2013.

Further reading

  • Lenhardt, J. M.; Ong, M. T.; Choe, R.; Evenhuis, C. R.; Martinez, T. J.; Craig, S. L., Trapping a Diradical Transition State by Mechanochemical Polymer Extension. Science 2010, 329 (5995), 1057-1060
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.