Miscanthus

Miscanthus, or silvergrass,[4] is a genus of African, Eurasian, and Pacific Island plants in the grass family.[5][6]

Species[3][7]
formerly included[3]

Miscanthus
Miscanthus sinensis
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Subfamily: Panicoideae
Supertribe: Andropogonodae
Tribe: Andropogoneae
Subtribe: Saccharinae
Genus: Miscanthus
Andersson
Type species
Miscanthus capensis
(Nees) Andersson[1][2]
Synonyms[3]
  • Diandranthus L.Liu
  • Miscanthidium Stapf
  • Rubimons B.S.Sun
  • Sclerostachya (Andersson ex Hack.) A.Camus
  • Triarrhena (Maxim.) Nakai
  • Xiphagrostis Coville ex Safford

see Chloris, Pseudopogonatherum, Saccharum, and Spodiopogon

  • Miscanthus affinis – Pseudopogonatherum quadrinerve
  • Miscanthus cotulifer – Spodiopogon cotulifer
  • Miscanthus polydactylos – Chloris elata
  • Miscanthus rufipilus – Saccharum rufipilum
  • Miscanthus tanakae – Pseudopogonatherum speciosum


Miscanthus sinensis

Winter miscanthus, an ornamental grass, growing in Southern Ontario, Canada

M. sinensis is widely cultivated as an ornamental plant, and is the source of several cultivars. In Japan, where it is known as susuki (すすき), it is considered an iconic plant of late summer and early autumn. It is mentioned in Man'yōshū (VIII:1538) as one of the seven autumn flowers (aki no nana kusa, 秋の七草). It is used for the eighth month in hanafuda playing cards. It is decorated with bush clover for the Mid-Autumn Festival. Miscanthus has also excellent fiber properties for papermaking.

Miscanthus × giganteus

Miscanthus x giganteus, an energy crop, growing in Germany

Miscanthus × giganteus (Miscanthus giganteus, giant miscanthus) [8] is a highly productive, rhizomatous C4 perennial grass, originating from Asia.[9] It is a sterile (non-invasive) hybrid of M. sinensis and M. sacchariflorus, and grows to heights of more than 4 meters (12 feet) in one growing season (from the third season onwards). In temperate climates such as in Europe the dry mass yield is 10-40 tonnes per hectare per year (4-16 tonnes per acre), depending on location. [10] Just like Pennisetum purpureum and Saccharum ravennae (which grow to the same height), it is also called «elephant grass».

Miscanthus' ability to grow on marginal land and in relatively cold weather conditions, its rapid CO2 absorption, its significant carbon sequestration and its high yield make it a favorite choice as a biofuel. [11]

Miscanthus is mainly used for heat and power, but can also be used as input for ethanol production (if harvested wet). If harvested dry, Miscanthus can be burnt directly in biomass boilers, or processed further (pellets, briquettes). It can also be used as a "green" building material, for both wall construction and as general insulation. An experimental house based on Miscanthus straw bales was built in 2017. [12]Miscanthus cropping enhance the nutrient cycling in the plant–soil system. [13]

References

  1. lectotype designated by Coville, Contr. U.S. Natl. Herb. 9: 400 (8 Apr 1905)
  2. Tropicos, Miscanthus Andersson
  3. Kew World Checklist of Selected Plant Families
  4. "Miscanthus". Natural Resources Conservation Service PLANTS Database. USDA. Retrieved 13 July 2015.
  5. Andersson, Nils Johan. 1855. Öfversigt af Förhandlingar: Kongl. Svenska Vetenskaps-Akademien 12: 165.
  6. Flora of China Vol. 22 Page 581 芒属 mang shu Miscanthus Andersson, Öfvers. Kongl. Vetensk.-Akad. Förh. 12: 165. 1855.
  7. The Plant List search for Miscanthus
  8. "Recent classification work at the Royal Botanic Gardens at Kew, England has designated it as M. x giganteus […], a hybrid of M. sinensis […] and M. sacchariflorus […]." Eric Anderson, Rebecca Arundale, Matthew Maughan, Adebosola Oladeinde, Andrew Wycislo & Thomas Voigt (2011) Growth and agronomy of Miscanthus x giganteus for biomass production, Biofuels, 2:1, page 71. https://doi.org/10.4155/bfs.10.80
  9. «M. × giganteus is a highly productive, sterile, rhizomatous C4 perennial grass that was collected in Yokahama, Japan in 1935 by Aksel Olsen. It was taken to Denmark where it was cultivated and spread throughout Europe and into North America for planting in horticultural settings.» Eric Anderson, Rebecca Arundale, Matthew Maughan, Adebosola Oladeinde, Andrew Wycislo & Thomas Voigt (2011) Growth and agronomy of Miscanthus x giganteus for biomass production, Biofuels, 2:1, page 71. https://doi.org/10.4155/bfs.10.80
  10. «The majority of the literature reporting dry biomass yield for M. × giganteus originates from European studies. Ceiling peak biomass yields in established stands of M. x giganteus have approached 40 t dry matter (DM) ha-1 in some European locations, although it may take 3–5 years to achieve these ceiling yields [84]. Across Europe, harvestable yields of up to 25 t DM ha-1 from established stands of M. × giganteus have been reported in areas between central Germany and southern Italy, while peak yields in central and northern Europe have ranged between 10–25 t DM ha-1, and in excess of 30 t DM ha-1 in southern Europe [3]. A quantitative review of established M. × giganteus stands across Europe reported a mean peak biomass yield of 22 t DM ha-1, averaged across N rates and precipitation levels [1].» Eric Anderson, Rebecca Arundale, Matthew Maughan, Adebosola Oladeinde, Andrew Wycislo & Thomas Voigt (2011) Growth and agronomy of Miscanthus x giganteus for biomass production, Biofuels, 2:1, page 79. https://doi.org/10.4155/bfs.10.80
  11. «Field experiments with the only genotype currently commercially available, Miscanthus x giganteus, a clone-based interspecies hybrid, have revealed its great photosynthetic efficiency, high biomass yield capacity, low input demands and good tolerance of temperate climates, and many of the characteristics that make miscanthus an ideal biomass crop.» Lewandowski I, Clifton-Brown J, Trindade LM, van der Linden GC, Schwarz K-U, Müller-Sämann K, Anisimov A, Chen C-L, Dolstra O, Donnison IS, Farrar K, Fonteyne S, Harding G, Hastings A, Huxley LM, Iqbal Y, Khokhlov N, Kiesel A, Lootens P, Meyer H, Mos M, Muylle H, Nunn C, Özgüven M, Roldán-Ruiz I, Schüle H, Tarakanov I, van der Weijde T, Wagner M, Xi Q and Kalinina O (2016) Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Frontiers in Plant Science 7:1620. https://doi.org/10.3389/fpls.2016.01620
  12. Blog of Centre for Alternative Technology in Wales: "The world’s first Miscanthus bale house". Retrieved 2017-11-27
  13. Willy H. Verheye, ed. (2010). "Perennial Energy Crops: Growth and Management". Soils, Plant Growth and Crop Production Volume III. EOLSS Publishers. p. 37. ISBN 978-1-84826-369-7.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.