October 2014 lunar eclipse

A total lunar eclipse took place on October 8, 2014. It is the second of two total lunar eclipses in 2014, and the second in a tetrad (four total lunar eclipses in series). Other eclipses in the tetrad are those of April 15, 2014, April 4, 2015, and September 28, 2015. Occurring only 2.1 days after perigee (Perigee on October 6, 2014), the Moon's apparent diameter was larger, 1960.6 arcseconds (32 arcminutes, 40.6 arcseconds).

October 2014 lunar eclipse
Total eclipse
Date8 October 2014
Gamma0.3827
Magnitude1.1659
Saros cycle127 (42 of 72)
Totality58 minutes, 50 seconds
Partiality199 minutes, 33 seconds
Penumbral318 minutes, 10 seconds

This is the 42nd member of Lunar Saros 127. The previous event is the September 1996 lunar eclipse. The next event is October 2032 lunar eclipse.

Visibility and appearance

NASA chart of the eclipse

The eclipse was visible in its entirety over the Northern Pacific. Viewers in North America experienced the eclipse after midnight on Wednesday, October 8, and the eclipse was visible from the Western Pacific, Australia, Indonesia, Japan, and Eastern Asia after sunset on the evening of October 8. Many areas of North America experienced a selenelion, able to see both the sun and the eclipsed moon at the same time.[1]


Visibility

Simulation of Earth from the Moon.

Background

A lunar eclipse occurs when the Moon passes within Earth's umbra (shadow). As the eclipse begins, the Earth's shadow first darkens the Moon slightly. Then, the shadow begins to "cover" part of the Moon, turning it a dark red-brown color (typically - the color can vary based on atmospheric conditions). The Moon appears to be reddish because of Rayleigh scattering (the same effect that causes sunsets to appear reddish) and the refraction of that light by the Earth's atmosphere into its umbra.[2] The following simulation shows the approximate appearance of the Moon passing through the earth's shadow. The Moon's brightness is exaggerated within the umbral shadow. The southern portion of the Moon was closest to the center of the shadow, making it darkest, and most red in appearance.

The planet Uranus was near opposition (opposition on October 7[3]) during the eclipse, just over 1° from the eclipsed Moon. Shining at magnitude 5.7, Uranus should have been bright enough to identify in binoculars. Due to parallax, the position of Uranus relative to the Moon varied significantly depending on the viewing position on the surface of Earth.


Composite from Aichi prefecture, Japan

Composite from Coralville, IA, first contact to the greatest.

Selenelion from Minneapolis, MN, with a partially eclipsed moon still up after sunrise, 12:26 UTC, seen by sunlight on foreground trees, right.

Timing

Local times of contacts
Time zone
adjustments from
UTC
+8h +11h +13h -9h -8h -7h -6h -5h -4h -3h
AWST AEDT NZDT HADT AKDT PDT MDT CDT
PET
EDT
BOT
ADT
AMST
ART
Event Evening October 8Evening October 7Morning October 8
P1 Penumbral begins N/A† 7:16 pm 9:16 pm 11:16 pm 12:16 am 1:16 am 2:16 am 3:16 am 4:16 am 5:16 am
U1 Partial begins N/A† 8:15 pm 10:15 pm 12:15 am 1:15 am 2:15 am 3:15 am 4:15 am 5:15 am 6:15 am
U2 Total begins 6:25 pm 9:25 pm 11:25 pm 1:25 am 2:25 am 3:25 am 4:25 am 5:25 am 6:25 am 7:25 am
Greatest eclipse 6:55 pm 9:55 pm 11:55 pm 1:55 am 2:55 am 3:55 am 4:55 am 5:55 am 6:55 am Set
U3 Total ends 7:24 pm 10:24 pm 12:24 am 2:24 am 3:24 am 4:24 am 5:24 am 6:24 am Set Set
U4 Partial ends 8:34 pm 11:34 pm 1:34 am 3:34 am 4:34 am 5:34 am 6:34 am Set Set Set
P4 Penumbral ends 9:34 pm 12:34 am 2:34 am 4:34 am 5:34 am 6:34 am Set Set Set Set

† The Moon was not visible during this part of the eclipse in this time zone.

Contact points relative to the earth's umbral and penumbral shadows, here with the moon near is descending node

The timing of total lunar eclipses are determined by its contacts:[4]

P1 (First contact): Beginning of the penumbral eclipse. Earth's penumbra touches the Moon's outer limb.
U1 (Second contact): Beginning of the partial eclipse. Earth's umbra touches the Moon's outer limb.
U2 (Third contact): Beginning of the total eclipse. The Moon's surface is entirely within Earth's umbra.
Greatest eclipse: The peak stage of the total eclipse. The Moon is at its closest to the center of Earth's umbra.
U3 (Fourth contact): End of the total eclipse. The Moon's outer limb exits Earth's umbra.
U4 (Fifth contact): End of the partial eclipse. Earth's umbra leaves the Moon's surface.
P4 (Sixth contact): End of the penumbral eclipse. Earth's penumbra no longer makes contact with the Moon.

Eclipses of 2014

The eclipse is the one of four total lunar eclipses in a short-lived series at the descending node of the Moon's orbit.

The lunar year series repeats after 12 lunations, or 354 days (shifting back about 10 days in sequential years). Because of the date shift, Earth's shadow will be about 11° west in sequential events.

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[5] This lunar eclipse is related to two annular solar eclipses of solar saros 134.

October 3, 2005 October 14, 2023

Saros series

Lunar saros series 127, repeating every 18 years and 11 days, has a total of 72 lunar eclipse events including 54 umbral lunar eclipses (38 partial lunar eclipses and 16 total lunar eclipses). Solar Saros 134 interleaves with this lunar saros with an event occurring every 9 years 5 days alternating between each saros series.

Greatest First

The greatest eclipse of the series occurred on 1888 Jul 23, lasting 102 minutes.
Penumbral Partial Total Central
1275 Jul 09 1473 Nov 04 1798 May 29 1834 Jun 21
Last
Central Total Partial Penumbral
1960 Sep 05 2068 Nov 09 2429 Jun 17 2555 Sep 02
1901–2100
1906 Aug 04 1924 Aug 14 1942 Aug 26
1960 Sep 05 1978 Sep 16 1996 Sep 27
2014 Oct 08 2032 Oct 18 2050 Oct 30
2068 Nov 09

See also

References

  1. Boyle, Alan (7 October 2014). "Lunar Eclipse Provides an Extra Twist for Skywatchers: Selenelion". NBC News. Retrieved 8 October 2014.
  2. Fred Espenak & Jean Meeus. "Visual Appearance of Lunar Eclipses". NASA. Retrieved 13 April 2014.
  3. "Archived copy". Archived from the original on 26 March 2016. Retrieved 19 April 2014.CS1 maint: archived copy as title (link)
  4. Clarke, Kevin. "On the nature of eclipses". Inconstant Moon. Cyclopedia Selenica. Retrieved 19 December 2010.
  5. Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.