Orders of magnitude (mass)

To help compare different orders of magnitude, the following lists describe various mass levels between 1059kg and 1052 kg.

Iron weights up to 50 kilograms depicted in Dictionnaire encyclopédique de l'épicerie et des industries annexes.

Units of mass

SI multiples of gram (g)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 g dg decigram 101 g dag decagram
10−2 g cg centigram 102 g hg hectogram
10−3 g mg milligram 103 g kg kilogram
10−6 g µg microgram (mcg) 106 g Mg megagram (tonne)
10−9 g ng nanogram 109 g Gg gigagram
10−12 g pg picogram 1012 g Tg teragram
10−15 g fg femtogram 1015 g Pg petagram
10−18 g ag attogram 1018 g Eg exagram
10−21 g zg zeptogram 1021 g Zg zettagram
10−24 g yg yoctogram 1024 g Yg yottagram
Common prefixes are in bold face.[1]

The table below is based on the kilogram (kg), the base unit of mass in the International System of Units (SI). The kilogram is the only standard unit to include an SI prefix (kilo-) as part of its name. The gram (10−3 kg) is an SI derived unit of mass. However, the names of all SI mass units are based on gram, rather than on kilogram; thus 103 kg is a megagram (106 g), not a "kilokilogram".

The tonne (t) is a SI-compatible unit of mass equal to a megagram, or 103 kg. The unit is in common use for masses above about 103 kg and is often used with SI prefixes. For example, a gigagram or 109 g is 103 tonnes, commonly called a kilotonne.

Other units

Other units of mass are also in use. Historical units include the stone, the pound, the carat, and the grain.

For subatomic particles, physicists use the mass equivalent to the energy represented by an electronvolt (eV). At the atomic level, chemists use the mass of one-twelfth of a carbon-12 atom (the dalton). Astronomers use the mass of the sun (M).

Below 1024 kg

Unlike other physical quantities, mass-energy does not have an a priori expected minimal quantity, as is the case with time or length, or an observed basic quantum as in the case of electric charge. Planck's law allows for the existence of photons with arbitrarily low energies. Consequently, there can only ever be an experimental lower bound on the mass of a supposedly massless particle; in the case of the photon, this confirmed lower bound is of the order of 3×10−27 eV = 10−62 kg.

Factor (kg) Value Item
1059 8.9×1059kg Graviton[2]
1040 4.2×1040kg Mass equivalent of the energy of a photon at the peak of the spectrum of the cosmic microwave background radiation (0.235 meV/c2)[3]
1036 1.8×1036kg One eV/c2, the mass equivalent of one electronvolt[4]
3.6×1036kg Electron neutrino, upper limit on mass (2eV/c2)[5]
1031 9.11×1031kg Electron (511keV/c2), the lightest elementary particle with a measured nonzero rest mass[6]
1030 3.0–5.5×1030kg Up quark (as a current quark) (1.7–3.1MeV/c2)[7]
1028 1.9×1028kg Muon (106MeV/c2)[8]
1027
yoctogram (yg)
1.661×1027kg Atomic mass unit (u) or dalton (Da)
1.673×1027kg Proton (938.3MeV/c2)[9][10]
1.674×1027kg Hydrogen atom, the lightest atom
1.675×1027kg Neutron (939.6MeV/c2)[11][12]
1026 1.2×1026kg Lithium atom (6.941Da)
3.0×1026kg Water molecule (18.015Da)
8.0×1026kg Titanium atom (47.867Da)
1025 1.1×1025kg Copper atom (63.546Da)
1.6×1025kg Z boson (91.2GeV/c2)[13]
2.2×1025kg Higgs Boson (125GeV/c2)
3.1×1025kg Top quark (173GeV/c2),[14] the heaviest known elementary particle
3.2×1025kg Caffeine molecule (194Da)
3.5×1025kg Lead-208 atom
4.9×1025kg Oganesson-294 atom, the heaviest known nuclide

10−24 to 10−19 kg

Factor (kg) Value Item
1024
zeptogram (zg)
1.2×1024kg Buckyball molecule (720u)
1023 1.4×1023kg Ubiquitin, a small protein (8.6 kDa)[15]
5.5×1023kg A typical protein (median size of roughly 300 amino acids ≈ 33 kDa)[16]
1022 1.1×1022kg Haemoglobin A molecule in blood (64.5 kDa)[17]
1021
attogram (ag)
1.65×1021kg Double-stranded DNA molecule consisting of 1,578 base pairs (995 kDa)[18]
4.3×1021kg Prokaryotic ribosome (2.6 MDa)[19]
7.1×1021kg Eukaryotic ribosome (4.3 MDa)[19]
7.6×1021kg Brome mosaic virus, a small virus (4.6 MDa)[20]
1020 3×1020kg Synaptic vesicle in rats (16.1 ± 3.8 MDa)[21]
6.8×1020kg Tobacco mosaic virus (41 MDa)[22]
1019 1.1×1019kg Nuclear pore complex in yeast (66 MDa)[23]
2.5×1019kg Human adenovirus (150 MDa)[24]

10−18 to 10−13 kg

Factor (kg) Value Item
1018
femtogram (fg)
1×1018kg HIV-1 virus[25][26]
4.7×1018kg DNA sequence of length 4.6 Mbp, the weight of the E. coli genome[27]
1017 ~1×1017kg Vaccinia virus, a large virus[28]
1.1×1017kg Mass equivalent of 1 joule[29]
1016 3×1016kg Prochlorococcus cyanobacteria, the smallest (and possibly most plentiful)[30] photosynthetic organism on Earth[31][32]
1015
picogram (pg)
1×1015kg E. coli bacterium (wet weight)[33]
6×1015kg DNA in a typical diploid human cell (approximate)
1014 2.2×1014kg Human sperm cell[32][34]
6×1014kg Yeast cell (quite variable)[35][36]
1013 1.5×1013kg Dunaliella salina, a green algae (dry weight)[37]

10−12 to 10−7 kg

Factor (kg) Value Item
1012
nanogram (ng)
1×1012kg Average human cell (1 nanogram)[38]
2–3×1012kg HeLa human cell[39][40][41]
8×1012kg Grain of birch pollen[42]
1011    
1010 2.5×1010kg Grain of maize pollen[43]
3.5×1010kg Very fine grain of sand (0.063 mm diameter, 350 nanograms)
109
microgram (µg)
3.6×109kg Human ovum[32][44]
2.4×109kg US RDA for vitamin B12 for adults[45]
108 1.5×108kg US RDA for vitamin D for adults[46]
~2×108kg Uncertainty in the mass of the international prototype of the kilogram (IPK) (±~20 µg)[47]
2.2×108kg Planck mass[48]
~7×108kg One eyelash hair (approximate)[49]
107 1.5×107kg US RDA for iodine for adults[50]
2–3×107kg Fruit fly (dry weight)[51][52]

10×106 to 1kg

Factor (kg) Value Item
106
milligram (mg)
2.5×106kg Mosquitoes, common smaller species (about 2.5 milligrams),[53] grain of salt or sand,[54] medicine[55]
105
centigram (cg)
1.1×105kg Small granule of quartz (2 mm diameter, 11 milligrams)[56]
2×105kg Adult housefly (Musca domestica, 21.4milligrams)[57]
104
decigram (dg)
0.27–2.0×104kg Range of amounts of caffeine in one cup of coffee (27–200 milligrams)[58]
1.5×104kg A frame of 35mm motion picture film (157 milligrams)[59]
2×104kg Metric carat (200 milligrams)[59]
103
gram (g)
1×103kg One cubic centimeter of water (1gram)[60]
1×103kg US dollar bill (1 gram)[61]
~1×103kg Two raisins (approximately 1 gram)[62]
~8×103kg Coins of one Euro (7.5grams),[63] one U.S. dollar (8.1grams)[64] and one Canadian Loonie (7grams [pre-2012], 6.27grams [2012-])[65]
102
decagram (dag)
2–4×102kg Adult mouse (Mus musculus, 20–40grams)[66]
1.37×102kg Amount of ethanol defined as one standard drink in the U.S. (13.7grams)[67]
2.8×102kg Ounce (avoirdupois) (28.3495 grams)[59]
4.7×102kg Mass equivalent of the energy that is 1 megaton of TNT equivalent[59][68]
10−1
hectogram   (hg)
0.1-0.2kg An orange (100–200 grams)[69]
0.142-0.149 kg A baseball used in the major league.[70]
0.454kg Pound (avoirdupois) (453.6 grams)[59]

1 kg to 105 kg

Factor (kg) Value Item
1kg
kilogram (kg)
1kg One litre (0.001 m3) of water[71]
1–3kg Smallest breed of dog (Chihuahua)[72]
1–3kg Typical laptop computer, 2010[73]
1–3kg Adult domestic tortoise
2.5–4kg Newborn human baby[74]
4.0kg Women's shot[75]
4–5kg Housecat[76]
7.26kg Men's shot[75]
101 9–27kg Medium-sized dog[77][78][79]
10–30kg A CRT computer monitor or television set
50kg Large dog breed (Great Dane)
70kg Adult human[80]
102 130–180kg Mature lion, female (130kg) and male (180kg)[81]
200–250kg Giant tortoise
240–450kg Grand piano[82][83]
400–900kg Dairy cow[84]
500–500,000kg A teaspoon (5 ml) of white dwarf material (0.5–500 tonnes)[85][86]
635 kg Heaviest human in recorded history (Jon Brower Minnoch)
907.2kg 1 short ton (2000 pounds - U.S.)[59]
103
megagram (Mg)
1000kg 1 tonne (U.S. spelling: metric ton)[59]
1000kg 1 cubic metre of water[71]
1016.05kg Ton (British) / 1 long ton (2240 pounds - U.S.)[59]
1300–1600kg Typical passenger cars[87]
2700–6000kg Adult elephant[88]
104 1.1×104kg Hubble Space Telescope (11 tonnes)[89]
1.2×104kg Largest elephant on record (12 tonnes)[90]
1.4×104kg Big Ben (bell) (14 tonnes)[91]
2.7×104kg ENIAC computer, 1946 (30 tonnes)[92]
4×104kg Maximum gross mass (truck + load combined) of a semi-trailer truck in the EU (40–44 tonnes)[93]
5×104–6×104kg Tank; Bulldozer (50–60 tonnes)
6.0×104kg Largest single-piece meteorite, Hoba West Meteorite (60 tonnes)[94]
7.3×104kg Largest dinosaur, Argentinosaurus (73 tonnes)[95]
105 1.8×105kg Largest animal ever, a blue whale (180 tonnes)[96]
4.2×105kg International Space Station (417 tonnes)[97]
6×105kg World's heaviest aircraft: Antonov An-225 (maximum take-off mass: 600 tonnes, payload: 250 tonnes)[98]

106 to 1011 kg

Factor (kg) Value Item
106
gigagram (Gg)
1×106kg Trunk of the giant sequoia tree named General Sherman, largest living tree by trunk volume (1121 tonnes)[99]
2.0×106kg Launch mass of the Space Shuttle (2041 tonnes)[100]
6×106kg Largest clonal colony, the quaking aspen named Pando (largest living organism) (6000 tonnes)[101]
7.8×106kg Virginia-class nuclear submarine (submerged weight)[102]
107 1×107kg Annual production of Darjeeling tea[103]
5.2×107kg RMS Titanic when fully loaded (52,000 tonnes)[104]
9.97×107kg Heaviest train ever: Australia's BHP Iron Ore, 2001 record (99,700 tonnes)[105]
108 6.6×108kg Largest ship and largest mobile man-made object, Seawise Giant, when fully loaded (660,000 tonnes)[106]
7×108kg Heaviest (non-pyramid) building, Palace of the Parliament in Bucharest, Romania[107]
109
teragram (Tg)
4.3×109kg Amount of matter converted into energy by the Sun each second[108]
6×109kg Great Pyramid of Giza[109]
1010
6×1010kg Amount of concrete in the Three Gorges Dam, the world's largest concrete structure[110][111]
1011 ~1×1011kg The mass of a primordial black hole with an evaporation time equal to the age of the universe[112]
2×1011kg Amount of water stored in London storage reservoirs (0.2 km3)[113]
4×1011kg Total mass of the world's human population[80][114][115]
5×1011kg Total biomass of Antarctic krill, probably the most plentiful animal species on the planet[116]

1012 to 1017 kg

Factor (kg) Value Item
1012
petagram (Pg)
0.8–2.1×1012kg Global biomass of fish[117]
4×1012kg Global annual human food production[118]
4×1012kg World crude oil production in 2009 (3,843 Mt)[119]
5.5×1012kg A teaspoon (5 ml) of neutron star material (5000 million tonnes)[120]
1013 1×1013kg Mass of comet 67P/Churyumov–Gerasimenko[121]
4×1013kg Global annual human carbon dioxide emission[122][123]
1014 1.05×1014kg Global net primary production – the total mass of carbon fixed in organic compounds by photosynthesis each year on Earth[124]
7.2×1014kg Total carbon stored in Earth's atmosphere[125]
1015
exagram (Eg)
2.0×1015kg Total carbon stored in the terrestrial biosphere[126]
3.5×1015kg Total carbon stored in coal deposits worldwide[127]
1016 1×1016kg 951 Gaspra, the first asteroid ever to be closely approached by a spacecraft (rough estimate)[128]
1×1016kg Rough estimate of the total carbon content of all organisms on Earth.[129]
3×1016kg Rough estimate of everything produced by the human species.[130]
3.8×1016kg Total carbon stored in the oceans.[131]
1017 1.6×1017kg Prometheus, a shepherd satellite for the inner edge of Saturn's F Ring[132]

1018 to 1023 kg

Factor (kg) Value Item
1018
zettagram (Zg)
5.1×1018kg Earth's atmosphere[133]
5.6×1018kg Hyperion, a moon of Saturn[132]
1019 3×1019kg 3 Juno, one of the larger asteroids in the asteroid belt[134]
3×1019kg The rings of Saturn[135]
1020 9.4×1020kg Ceres, dwarf planet within the asteroid belt[136]
1021
yottagram (Yg)
1.4×1021kg Earth's oceans[137]
1.5×1021kg Charon, the largest moon of Pluto[138]
2.9–3.7×1021kg The asteroid belt[139]
1022 1.3×1022kg Pluto[138]
2.1×1022kg Triton, largest moon of Neptune[140]
7.3×1022kg Earth's Moon[141]
1023 1.3×1023kg Titan, largest moon of Saturn[142]
1.5×1023kg Ganymede, largest moon of Jupiter[143]
3.3×1023kg Mercury[144]
6.4×1023kg Mars[145]

1024 to 1029 kg

Factor (kg) Value Item
1024 4.9×1024kg Venus[146]
6.0×1024kg Earth[147]
1025 3×1025kg Oort cloud[148]
8.7×1025kg Uranus[149]
1026 1.0×1026kg Neptune[150]
5.7×1026kg Saturn[151]
1027 1.9×1027kg Jupiter[152]
1028 2–14×1028kg Brown dwarfs (approximate)[153]
1029 3×1029kg Barnard's Star, a nearby red dwarf[154]

1030 to 1035 kg

Factor (kg) Value Item
1030 2×1030kg The Sun[155] (one solar mass or M = 1.989×1030kg)
2.8×1030kg Chandrasekhar limit (1.4 M)[156][157]
1031 4×1031kg Betelgeuse, a red supergiant star (20 M)[158]
1032 4–7×1032kg R136a1, the most massive of known stars (230 to 345 M)[159]
6–8×1032kg Hyades star cluster (300 to 400 M)[160]
1033 1.6×1033kg Pleiades star cluster (800 M)[161]
1034
1035 ~1035kg Typical globular cluster in the Milky Way (overall range: 3×103 to 4×106 M)[162]
2×1035kg Low end of mass range for giant molecular clouds (1×105 to 1×107 M)[163][164]
7.3×1035kg Jeans mass of a giant molecular cloud at 100K and density 30 atoms per cc;[165]
possible example: Orion Molecular Cloud Complex

1036 to 1041 kg

Factor (kg) Value Item
1036 1.79×1036kg The entire Carina complex.
2.4×1036kg The Gould Belt of stars, including the Sun (1.2×106 M)[166]
7–8×1036kg The supermassive black hole at the center of the Milky Way, associated with the radio source Sagittarius A* (3.7±0.2×106 M)[167]
8×1036kg Omega centauri, the largest globular cluster in the milky way, containing approximately 10 million stars.
1037    
1038    
1039    
1040 4.17×1040kg NGC 4889, the largest measured supermassive black hole, weighing 21 billion solar masses (2.1×1010 M)
1041 4×1041kg Visible mass of the Milky Way galaxy[168]

1042 kg and greater

Factor (kg) Value Item
1042 1.2×1042kg Milky Way galaxy (5.8×1011 M)[169]
2–3×1042kg Local Group of galaxies, including the Milky Way (1.29±0.14×1012 M)[169]
1043    
1044    
1045 1–2×1045kg Local or Virgo Supercluster of galaxies, including the Local Group (1×1015 M)[170]
1046    
1047 2×1047kg Laniakea supercluster of galaxies, which encompasses the Virgo supercluster
1048 2×1048kg Pisces–Cetus Supercluster Complex, a galaxy filament that includes the Laniakea Supercluster.
1049 4×1049 kg Hercules–Corona Borealis Great Wall, the largest structure in the known universe
1050    
1051    
1052 4.4506×1052kg Mass of the observable universe as estimated by NASA
6×1052kg Mass of the observable universe as estimated by the National Solar Observatory[171]

Notes

  1. Criterion: A combined total of at least 250,000 Google hits on both the modern spelling (gram) and the dated British spelling (gramme). 
  2. "we bound the mass of the graviton to be mg≤5.0×1023/c2 (90% credible level)" LIGO Gravitational Wave Observatory
  3. Fixsen, D. J. (2009). "The Temperature of the Cosmic Microwave Background". The Astrophysical Journal. 707 (2): 916–920. arXiv:0911.1955. Bibcode:2009ApJ...707..916F. doi:10.1088/0004-637X/707/2/916. S2CID 119217397.
  4. "Conversion from eV to kg". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-10-19.
  5. "The most sensitive analysis on the neutrino mass [...] is compatible with a neutrino mass of zero. Considering its uncertainties this value corresponds to an upper limit on the electron neutrino mass of m<2.2 eV/c2 (95% Confidence Level)" The Mainz Neutrino Mass Experiment Archived 2016-03-03 at the Wayback Machine
  6. "CODATA Value: electron mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-08-21.
  7. K. Nakamura; Particle Data Group (2011). "PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b', t', Free)'" (PDF). Particle Data Group. Retrieved 2011-08-08.
  8. "CODATA Value: muon mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-08-23.
  9. "CODATA Value: proton mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-08-23.
  10. "CODATA Value: proton mass energy equivalent in MeV". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-08-23.
  11. "CODATA Value: neutron mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-08-23.
  12. "CODATA Value: neutron mass energy equivalent in MeV". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-08-23.
  13. Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018. Archived from the original on 2012-07-12.
  14. K. Nakamura; Particle Data Group (2011). "PDGLive Particle Summary 'Quarks (u, d, s, c, b, t, b', t', Free)'" (PDF). Particle Data Group. Retrieved 2011-08-08.
  15. "Ubiquitin". Channel Proteomes. Retrieved 2011-10-12.
  16. Ron Milo. "How big is the "average" protein?" (PDF). Archived from the original (PDF) on 2011-08-08. Retrieved 2011-10-13.
  17. Van Beekvelt MC; Colier WN; Wevers RA; Van Engelen BG (Feb 2001). "Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle". J Appl Physiol. 90 (2): 511–519. doi:10.1152/jappl.2001.90.2.511. ISSN 8750-7587. PMID 11160049. S2CID 15468862.
  18. From attograms to Daltons: Cornell NEMS device detects the mass of a single DNA molecule . Retrieved 2010-10-14
  19. "Eukaryotic Ribosome". ETH Zurich. Archived from the original on 2011-09-11. Retrieved 2011-10-09.
  20. Bockstahler, L.; Kaesberg, P. (1962). "The Molecular Weight and Other Biophysical Properties of Bromegrass Mosaic Virus". Biophysical Journal. 2 (1): 1–9. Bibcode:1962BpJ.....2....1B. doi:10.1016/S0006-3495(62)86836-2. PMC 1366384. PMID 19431313.
  21. "Atomic mass of synaptic vesicle - Rat Rattus". BioNumbers. Retrieved 2011-10-09.
  22. "Molecular weight - Tobacco mosaic virus (TMV) - BNID 105958". BioNumbers. Retrieved 2011-10-09.
  23. Rout, M. P.; Blobel, G. (1993). "Isolation of the yeast nuclear pore complex". The Journal of Cell Biology. 123 (4): 771–783. doi:10.1083/jcb.123.4.771. PMC 2200146. PMID 8227139.
  24. Liu, H.; Jin, L.; Koh, S. B. S.; Atanasov, I.; Schein, S.; Wu, L.; Zhou, Z. H. (2010). "Atomic Structure of Human Adenovirus by Cryo-EM Reveals Interactions Among Protein Networks" (PDF). Science. 329 (5995): 1038–1043. Bibcode:2010Sci...329.1038L. doi:10.1126/science.1187433. PMC 3412078. PMID 20798312.
  25. "Virus diameter of HIV-1 - HIV". BioNumbers. Retrieved 2011-11-01.
  26. Calculated : volume = 4/3 × π × (126e−9 m / 2)³ = 1.05e−21 m³. Assume density = 1 g/cm³ => mass = 1.05e−21 m³ × 1e3 kg/m³ = 1.05e−18 kg
  27. Frederick R. Blattner; Guy Plunkett III; et al. (1997). "The Complete Genome Sequence of Escherichia coli K-12". Science. 277 (5331): 1453–1462. doi:10.1126/science.277.5331.1453. PMID 9278503.
  28. "Mass of virion - Virus Vaccinia". BioNumbers. Retrieved 2011-11-01.
  29. "Conversion from J to kg". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-08-23.
  30. "Prochlorococcus marinus MIT 9313 - Home". Joint Genome Institute. Archived from the original on 2015-05-20. Retrieved 2011-11-01.
  31. "Size (diameter) of most abundant cyanobacteri - Prochlorococcus - BNID 101520". BioNumbers. Retrieved 2011-11-01.
  32. Mass calculated from volume assuming density of 1 g/mL
  33. "E. coli Statistics". The CyberCell Database. Archived from the original on 2012-03-18. Retrieved 2011-09-11.
  34. M. R. Curry, J. D. Millar, S. M. Tamuli & P. F. Watson, “Surface Area & Volume Measurements for Ram & Human Spermatozoa,” Biology of Reproduction, 55, 6 (1996‑12‑01): 1325–32.
  35. Ron Milo. "How big is a yeast cell" (PDF). Archived from the original (PDF) on 2011-08-08. Retrieved 2011-10-09.
  36. ""Rule of thumb" for cell mass". BioNumbers. Retrieved 2011-10-09.
  37. "Cell dry weight - Green algae Dunaliella salina". BioNumbers. Retrieved 2011-10-14.
  38. "A quick introduction to elements of biology - cells, molecules, genes, functional genomics, microarrays". European Bioinformatics Institute. if we estimate the average weight of a human cell as about 10^-9 g
  39. "Measured HeLa cell mass". BioNumbers. Retrieved 2011-10-09.
  40. "Estimated HeLa cell mass". BioNumbers. Retrieved 2011-10-09.
  41. Phillips, Kevin G.; Jacques, Steven L.; McCarty, Owen J. T. (13 September 2012). "Measurement of Single Cell Refractive Index, Dry Mass, Volume, and Density Using a Transillumination Microscope". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/physrevlett.109.118105. PMC 3621783. PMID 23005682.
  42. Schäppi, G. F.; Suphioglu, C.; Taylor, P. E.; Knox, R. B. (1997). "Concentrations of the major birch tree allergen Bet v 1 in pollen and respirable fine particles in the atmosphere". Journal of Allergy and Clinical Immunology. 100 (5): 656–661. doi:10.1016/S0091-6749(97)70170-2. PMID 9389296. "the total pollen grain mass of approximately 7.85 ng"
  43. Fonseca, A. E.; Westgate, M. E.; Grass, L.; Dornbos, J. (2003). "Tassel Morphology as an Indicator of Potential Pollen Production in Maize". Crop Management. 2: 1–15. doi:10.1094/CM-2003-0804-01-RS. Archived from the original on 2013-03-31. Retrieved 2015-08-28. "The dry weight of individual pollen grains has been estimated at 250 ng"
  44. "Volume of human oocyte - Human Homo sapiens". BioNumbers. Retrieved 2011-11-01.
  45. "Dietary Supplement Fact Sheet: Vitamin B12". Office of Dietary Supplements. Retrieved 2011-10-02.
  46. "Dietary Supplement Fact Sheet: Vitamin D". Office of Dietary Supplements. Retrieved 2011-10-02.
  47. Report to the CGPM, 14th meeting of the Consultative Committee for Units (CCU), April 2001, 2. (ii); General Conference on Weights and Measures, 22nd Meeting, October 2003, which stated "The kilogram is in need of a new definition because the mass of the prototype is known to vary by several parts in 108 over periods of time of the order of a month ..." (3.2 MB ZIP file, here).
  48. "CODATA Value: Planck mass". The NIST Reference on Constants, Units, and Uncertainty. NIST. Retrieved 2011-09-30.
  49. "Weigh An Eyelash". National Semiconductor. Retrieved 2011-10-02.
  50. "Dietary Supplement Fact Sheet: Iodine". Office of Dietary Supplements. Retrieved 2011-10-02.
  51. "Mean dry mass (male) - Fruit fly". BioNumbers. Retrieved 2011-10-14.
  52. "Mean dry mass (female) - Fruit fly". BioNumbers. Retrieved 2011-10-14.
  53. "Frequently Asked Questions". American Mosquito Control Association. Archived from the original on 2011-09-18. Retrieved 2011-08-23. Smaller species found around houses commonly weigh about 2.5 milligrams.
  54. https://www.mathsisfun.com/measure/metric-mass.html. Retrieved 2019-09-19. Missing or empty |title= (help)
  55. https://thinkmetric.org.uk/basics/mass/. Retrieved 2019-09-19. Missing or empty |title= (help)
  56. Quartz has a density of 2.65. Mass = Volume × Density = (4/3 × π × (1e−3 m)³) × (2.65 × 1e3 kg/m³) = 1.1e−5 kg.
  57. Price, G. M. (1961). "Some Aspects of Amino Acid Metabolism in the Adult Housefly, Musca domestica". Biochem. J. 80 (2): 420–8. doi:10.1042/bj0800420. PMC 1244018. PMID 16748919.
  58. "Caffeine content for coffee, tea, soda and more". Mayo Clinic. Retrieved 2011-08-23.
  59. "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. 2009-07-02. Retrieved 29 October 2011.
  60. "Mass, Weight, Density or Specific Gravity of Water at Various Temperatures". SiMetric. Retrieved 13 December 2011.
  61. "FAQ Library". U.S. Bureau of Engraving and Printing. Archived from the original on 2011-09-29. Retrieved 2011-08-21.
  62. "FoodData Central". fdc.nal.usda.gov. Retrieved 2019-04-22.
  63. "Denominations and technical specifications of Euro coins". Retrieved 2013-06-22. weight (g): 7.5
  64. "Coin specifications". United States Mint. Retrieved 2011-08-23.
  65. "the 1-dollar coin - Royal Canadian Mint". Royal Canadian Mint. Retrieved 2014-05-24.
  66. "Biomethodology of the Mouse". Animal Research, The University of Iowa. Retrieved 2011-10-17.
  67. "Alcohol and Public Health: Frequently Asked Questions". CDC. 2018-03-29. Retrieved 2011-08-23.
  68. Calculated: 1e6 tons of TNT-equivalent × 4.184e9 J/ton of TNT-equivalent × 1.1e−17 kg of mass-equivalent/J = 4.7e−2 kg of mass-equivalent
  69. "Oranges, raw, with peel (NDB No. 09205 and 09200)". USDA Nutrient Database. USDA. Archived from the original on 2015-03-03. Retrieved 2011-10-18.
  70. Christina Lee, "Mass of a Baseball", The Physics Factbook, 1999. Retrieved 2018-07-04
  71. "Water - Density and Specific Weight". The Engineering Tool Box.
  72. "Chihuahua Weight Chart". Retrieved 14 December 2011. 907 g ... 2722 g
  73. "Laptop Buyer's Guide". About.com. Retrieved 14 December 2011. 2.0 lbs ... > 6 lbs
  74. "Baby birth weight Information". Retrieved 14 December 2011. 2500 g ... 4000 g
  75. "Shot Put - Introduction". IAAF. Retrieved 12 December 2011.
  76. Mattern, Michelle Y.; McLennan, Deborah A. (2000). "Phylogeny and Speciation of Felids". Cladistics. 16 (2): 232–253. doi:10.1111/j.1096-0031.2000.tb00354.x.
  77. "Search for Medium Dogs By Looking at Pictures, Dogs that Can get to 20-50 Pounds". Retrieved 2 July 2013. Roughly ranging from 20-50 pounds (9-23 kg)
  78. "Dog Services - Adoptable Dogs". Archived from the original on 7 July 2013. Retrieved 2 July 2013. medium (30lbs to 60lbs)
  79. "Dog Groups - Medium Sized Dogs - Only Dog Breeds". Retrieved 2 July 2013. 25 to 50 pounds
  80. "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011. 70 kg
  81. Nowell, Kristin; Jackson, Peter (1996). "Panthera Leo" (PDF). Wild Cats: Status Survey and Conservation Action Plan. Gland, Switzerland: IUCN/SSC Cat Specialist Group. p. 17. ISBN 978-2-8317-0045-8. adult males (>4 years) 181 kg (n=14) and females 126 kg (n=25)
  82. "GRAND PIANO GUIDE TO STEINWAY AND INDUSTRY STANDARD SIZES". Bluebook of Pianos. Retrieved 13 December 2011. 540 lbs ... 990 lbs
  83. Calculated: 540 lbs × 0.4536 kg/lb = 240 kg. 990 lb × 0.4536 kg/lb = 450 kg.
  84. "Cow (Cattle) breed comparisons". Archived from the original on 9 December 2015. Retrieved 14 December 2011.
  85. Jennifer Johnson. "Lecture 22: Extreme Stars: White Dwarfs & Neutron Stars". Ohio State Department of Astronomy. Retrieved 2011-10-17.
  86. Using the quoted density of 1e5 to 1e8 kg/m³ for white dwarf material, 1 teaspoon = 5mL = 5e−3 m³ has a calculated mass of: Low end: 5e−3 m³ × 1e5 kg/m³ = 5e2 kg High end: 5e−3 m³ × 1e8 kg/m³ = 5e5 kg
  87. United States Environmental Protection Agency (PDF). EPA-420-R-16-010: 28, 30. November 2016 https://www.epa.gov/sites/production/files/2016-11/documents/420r16010.pdf. Retrieved 2 November 2017. Missing or empty |title= (help)
  88. Norton, C.A. Spinage ; illustrated by Larry (1994). Elephants. London: T & A D Poyser. ISBN 9780856610882.
  89. "Solar System Exploration: Hubble Space Telescope". NASA. Archived from the original on 2015-06-19. Retrieved 2011-08-23.
  90. Ward, Rowland (1935). Records of Big Game (10th ed.). London.
  91. "The Story of Big Ben". Whitechapel Bell Foundry. Retrieved 2011-10-17.
  92. Kennedy Jr., T.R. (Feb 15, 1946). "Electronic Computer Flashes Answers, May Speed Engineering". The New York Times (2–15–1946). Retrieved 2 November 2017.
  93. "Council Directive 96/53/EC of 25 July 1996" (PDF). 1996-09-17. p. 12. Retrieved 2011-10-18.
  94. Meteoritical Bulletin Database: Hoba
  95. Mazzetta, Gerardo V.; Christiansen, Per; Fariña, Richard A. (2004). "Giants and Bizarres: Body Size of Some Southern South American Cretaceous Dinosaurs" (PDF). Historical Biology. 16 (2–4): 71–83. CiteSeerX 10.1.1.694.1650. doi:10.1080/08912960410001715132. S2CID 56028251. Retrieved 2009-01-23.
  96. "What is the biggest animal ever to exist on Earth?". How Stuff Works. 2001-07-25. Retrieved 2011-10-17.
  97. "International Space Station: The ISS to Date". NASA. Retrieved 2011-08-23.
  98. Greg Goebel. "The Antonov Giants: An-22, An-124, & An-225". Air Vectors. Archived from the original on June 29, 2011. Retrieved 2011-10-17.
  99. Fry, Walter; White, John Roberts (1942). Big Trees. Palo Alto, California: Stanford University Press.
  100. "Space Shuttle Basics". NASA. Retrieved 2011-08-24.
  101. David Hershey. "Re: What is the biggest tree in the world?". MadSci Network. Retrieved 2011-10-17.
  102. "The US Navy". US Navy. Retrieved 17 December 2011.
  103. "Darjeeling Tea: Questions and Answers". Darjeeling Tea Association. Archived from the original on 2011-09-05. Retrieved 2011-09-11.
  104. "THE 66,000 TON MYTH". Mark Chirnside. Retrieved 2011-08-24.
  105. "Hamersley Freight Line - Railway Technology". Railway Technology. Retrieved 2011-10-17.
  106. "Knock Nevis - The world's largest ship ever". Container-Transportation. Retrieved 19 October 2011.
  107. "Heaviest building". Guinness World Records. Retrieved 13 March 2015.
  108. "Is the Sun Shrinking?". Stanford Solar Center. Retrieved 2011-08-24.
  109. Levy, Janey (2005). The Great Pyramid of Giza: Measuring Length, Area, Volume, and Angles. Rosen Publishing Group. ISBN 978-1-4042-6059-7.
  110. Richard R. Wertz. "The Three Gorges Dam Project". Retrieved 2011-10-17.
  111. "Density of Concrete". The Physics Factbook. Retrieved 2011-10-17.
  112. Andrew Hamilton. "Hawking Radiation". University of Colorado at Boulder. Archived from the original on 2007-02-03. Retrieved 2011-10-17.
  113. Chris Birks; Mike Owen; Brian Arkell (2001). "London's Water Resources: Threat or Opportunity". Area. 33 (1): 95–97. JSTOR 20004131.
  114. "World POPClock Projection". U.S. Census Bureau. 13 Dec 2011. Retrieved 13 December 2011. 6,981,057,639
  115. Calculated: adult men have a weight of 70 kg, use 55 kg to account for smaller weights of women and children. 7.0e9 people × 55 kg/person = 4e11 kg
  116. Stephen Nicol & Yoshinari Endo (1997). Krill Fisheries of the World. Fisheries Technical Paper 367. Food and Agriculture Organization. ISBN 978-92-5-104012-6.
  117. Wilson, R. W.; Millero, F. J.; Taylor, J. R.; Walsh, P. J.; Christensen, V.; Jennings, S.; Grosell, M. (2009). "Contribution of Fish to the Marine Inorganic Carbon Cycle". Science. 323 (5912): 359–362. Bibcode:2009Sci...323..359W. doi:10.1126/science.1157972. PMID 19150840. S2CID 36321414.
  118. "World Environment Day - Food Waste Facts". Archived from the original on 2 April 2015. Retrieved 13 March 2015.
  119. "Key World Energy Statistics 2010". International Energy Agency. 2010. p. 10. Archived from the original (PDF) on 2015-04-30. Retrieved 2011-09-13.
  120. The average density of material in a neutron star of radius 10 km is 1.1×1012 kg cm−3. Therefore, 5 ml of such material is 5.5×1012 kg, or 5 500 000 000 t. This is about 15 times the total mass of the human world population. Alternatively, 5 ml from a neutron star of radius 20 km radius (average density 8.35×1010 kg cm−3) has a mass of about 400 Mt, or about the mass of all humans.
  121. Pätzold, M.; Andert, T.; Hahn, M.; Asmar, S. W.; Barriot, J.-P.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Grün, E.; Weissman, P. R.; Sierks, H.; Jorda, L.; Gaskell, R.; Preusker, F.; Scholten, F. (4 February 2016). "A homogeneous nucleus for comet 67P/Churyumov–Gerasimenko from its gravity field". Nature. 530 (7588): 63–65. Bibcode:2016Natur.530...63P. doi:10.1038/nature16535. PMID 26842054. S2CID 4470894.
  122. Amos, Jonathan (2014-12-18). "BBC News - Carbon dioxide satellite mission returns first global maps". BBC News. Retrieved 13 March 2015.
  123. "Carbon dioxide monitoring rocket blasts off – News – ABC Environment (Australian Broadcasting Corporation)". Retrieved 13 March 2015.
  124. Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. (1998). "Primary production of the Biosphere: Integrating Terrestrial and Oceanic Components". Science (Submitted manuscript). 281 (5374): 237–240. Bibcode:1998Sci...281..237F. doi:10.1126/science.281.5374.237. PMID 9657713.
  125. "Total carbon stored in the atmosphere". BioNumbers. Retrieved 2011-10-19.
  126. "Total carbon stored in the terrestrial biosphere". BioNumbers. Retrieved 2011-10-19.
  127. "Total carbon stored in coal deposits worldwide". BioNumbers. Retrieved 2011-10-19.
  128. "Asteroid Fact Sheet". NASA. Retrieved 2011-10-15.
  129. William B. Whitman; David C. Coleman; William J. Wiebe (1998). "Prokaryotes: The unseen majority". Proceedings of the National Academy of Sciences of the United States of America. 95 (12): 6578–6583. Bibcode:1998PNAS...95.6578W. doi:10.1073/pnas.95.12.6578. PMC 33863. PMID 9618454.
  130. Zalasiewicz, Jan; Williams, Mark; Waters, Colin N.; Barnosky, Anthony D.; Palmesino, John; Rönnskog, Ann-Sofi; Edgeworth, Matt; Neal, Cath; Cearreta, Alejandro; Ellis, Erle C.; Grinevald, Jacques; Haff, Peter; Ivar Do Sul, Juliana A.; Jeandel, Catherine; Leinfelder, Reinhold; McNeill, John R.; Odada, Eric; Oreskes, Naomi; Price, Simon James; Revkin, Andrew; Steffen, Will; Summerhayes, Colin; Vidas, Davor; Wing, Scott; Wolfe, Alexander P. (2017). "Scale and diversity of the physical technosphere: A geological perspective" (PDF). The Anthropocene Review. 4: 9–22. doi:10.1177/2053019616677743. hdl:11250/2553087. S2CID 55431583.
  131. "Total carbon stored in the oceans (mostly inorganic)". BioNumbers. Retrieved 2011-10-19.
  132. Thomas, P. C. (July 2010). "Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission" (PDF). Icarus. 208 (1): 395–401. Bibcode:2010Icar..208..395T. doi:10.1016/j.icarus.2010.01.025.
  133. Trenberth, Kevin E.; Smith, Lesley. "The Mass of the Atmosphere: a Constraint on Global Analyses". National Center for Atmospheric Research. Retrieved 2011-09-09.
  134. Jim Baer (2010). "Recent Asteroid Mass Determinations". Personal Website. Archived from the original on 2013-07-02. Retrieved 2011-10-16.
  135. Brainerd, Jerome James. "Saturn's Rings". The Astrophysics Spectator. Retrieved 2011-09-09.
  136. Carry, B.; Dumas, C.; Fulchignoni, M.; Merline, W. J.; Berthier, J.; Hestroffer, D.; Fusco, T.; Tamblyn, P. (2008). "Near-infrared mapping and physical properties of the dwarf-planet Ceres" (PDF). Astronomy and Astrophysics. 478 (1): 235–244. arXiv:0711.1152. Bibcode:2008A&A...478..235C. doi:10.1051/0004-6361:20078166. S2CID 6723533. Archived from the original (PDF) on May 30, 2008.
  137. "Mass of the Oceans". The Physics Factbook. Retrieved 2011-09-09.
  138. Buie, Marc W.; Grundy, William M.; Young, Eliot F.; Young, Leslie A.; Stern, S. Alan (2006). "Orbits and Photometry of Pluto's Satellites: Charon, S/2005 P1, and S/2005 P2". The Astronomical Journal. 132 (1): 290–298. arXiv:astro-ph/0512491. Bibcode:2006AJ....132..290B. doi:10.1086/504422. S2CID 119386667.
  139. Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. (July 2002). "Hidden Mass in the Asteroid Belt". Icarus. 158 (1): 98–105. Bibcode:2002Icar..158...98K. doi:10.1006/icar.2002.6837.
  140. "Solar System Exploration: Triton: Overview". Solar System Exploration. NASA. Archived from the original on 2011-10-15. Retrieved 2011-09-22.
  141. "Earth's Moon: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-10-13.
  142. Jacobson, R. A.; Antreasian, P. G.; Bordi, J. J.; Criddle, K. E.; Ionasescu, R.; Jones, J. B.; Mackenzie, R. A.; Meek, M. C.; Parcher, D.; Pelletier, F. J.; Owen Jr., W. M.; Roth, D. C.; Roundhill, I. M.; Stauch, J. R. (December 2006). "The Gravity Field of the Saturnian System from Satellite Observations and Spacecraft Tracking Data". The Astronomical Journal. 132 (6): 2520–2526. Bibcode:2006AJ....132.2520J. doi:10.1086/508812.
  143. Showman, A. P.; Malhotra, R. (1999). "The Galilean Satellites" (PDF). Science. 286 (5437): 77–84. doi:10.1126/science.286.5437.77. PMID 10506564.
  144. "Mercury: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-22.
  145. "Mars: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-22.
  146. "Venus: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-22.
  147. "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-29.
  148. Weissman, Paul R (1983). "The mass of the Oort cloud". Astronomy and Astrophysics. 118 (1): 90–94. Bibcode:1983A&A...118...90W.
  149. "Uranus: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-22.
  150. "Neptune: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-22.
  151. "Saturn: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-22.
  152. "Jupiter: Facts & Figures". Solar System Exploration. NASA. Retrieved 2011-09-22.
  153. Boss, Alan (2001-04-03). "Are They Planets or What?". Carnegie Institution of Washington. Archived from the original on 2006-09-28. Retrieved 2006-06-08.
  154. Dawson, P. C.; De Robertis, M. M. (2004). "Barnard's Star and the M Dwarf Temperature Scale". The Astronomical Journal. 127 (5): 2909. Bibcode:2004AJ....127.2909D. doi:10.1086/383289.
  155. "Sun Fact Sheet". NASA. Retrieved 2011-10-15.
  156. p. 55, How A Supernova Explodes, Hans A. Bethe and Gerald Brown, pp. 51–62 in Formation And Evolution of Black Holes in the Galaxy: Selected Papers with Commentary, Hans Albrecht Bethe, Gerald Edward Brown, and Chang-Hwan Lee, River Edge, NJ: World Scientific: 2003. ISBN 981-238-250-X.
  157. Mazzali, P. A.; Röpke, F. K.; Benetti, S.; Hillebrandt, W. (2007). "A Common Explosion Mechanism for Type Ia Supernovae". Science (PDF). 315 (5813): 825–828. arXiv:astro-ph/0702351v1. Bibcode:2007Sci...315..825M. doi:10.1126/science.1136259. PMID 17289993. S2CID 16408991.
  158. Kaler, Jim. "Betelgeuse" Archived 2008-12-16 at the Wayback Machine (2008). Stars. University of Illinois. Retrieved on 2009-02-08.
  159. Crowther, Paul A.; Schnurr, Olivier; Hirschi, Raphael; Yusof, Norhasliza; et al. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x. S2CID 53001712.
  160. The Astrophysics Spectator: Open Star Clusters. Retrieved 2008-09-15
  161. Adams, J. D.; Stauffer, J. R.; Monet, D. G.; Skrutskie, M. F.; Beichman, C. A. (2001). "The Mass and Structure of the Pleiades Star Cluster from 2MASS". The Astronomical Journal. 121 (4): 2053. arXiv:astro-ph/0101139. Bibcode:2001AJ....121.2053A. doi:10.1086/319965. S2CID 17994583.
  162. "Globular cluster parameters". Oleg Y. Gnedin and Jeremia P. Ostriker. Archived from the original on 2011-05-23. Retrieved 2011-09-09.
  163. "Cool Cosmos". Infrared Processing and Analysis Center. Retrieved 2011-10-16.
  164. "Milky Way Galaxy: Molecular Clouds". The Astrophysics Spectator. Retrieved 2011-10-16.
  165. The Astrophysics Spectator: Molecular Clouds. Retrieved 2008-09-15
  166. Olano, C. A. (1982). "On a model of local gas related to Gould's belt". Astronomy and Astrophysics. 112 (2): 195–208. Bibcode:1982A&A...112..195O.
  167. Ghez, A. M.; Salim, S.; Hornstein, S. D.; Tanner, A.; Lu, J. R.; Morris, M.; Becklin, E. E.; Duchene, G. (2005). "Stellar Orbits around the Galactic Center Black Hole". The Astrophysical Journal. 620 (2): 744–757. arXiv:astro-ph/0306130. Bibcode:2005ApJ...620..744G. doi:10.1086/427175. S2CID 8656531.
  168. Jim Brau. "The Milky Way Galaxy". Retrieved 2011-09-12. total mass (within 15 kpc) = 2 x 10^11 solar masses
  169. Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6. S2CID 120973010.
  170. Einasto, M.; Saar, E.; Liivamägi, L. J.; Einasto, J.; et al. (2007). "The richest superclusters: I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037. S2CID 15004251.
  171. "Mass, Size, and Density of the Universe".
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.